
Dorna Robotics
1306 MONTE VISTA AVE, STE 8
UPLAND, CA 91786
USA
+1 (800) 733-2187
sales@dorna.ai
https://dorna.ai

Dorna Robot User Manual
Dorna TA

Last update on Oct 1, 2024

1

Firmware 305

Dorna Lab 2.1.0

Python API 2.1.3

2

The information contained herein is the property of Dorna Robotics and shall not be
reproduced in whole or in part without the prior written approval of Dorna Robotics. The
information herein is subject to change without notice and should not be construed as a
commitment by Dorna Robotics. This document is periodically reviewed and revised. Dorna
Robotics assumes no responsibility for any errors or omissions in this document.

3

Table of contents
Table of contents... 4
Introduction..11

How to read this manual.. 11
Robot arm and controller box...11
Robot parts.. 12

What do the boxes contain?.. 12
Where to find more information... 12

Safety..12
The brakes...13
Power supply... 13
Robot cables..14
Motors..14
IO wiring...14
Operation environment.. 14
Emergency stop...15
Safety function... 15
Risk assessment..16

Product specification.. 17
Specs...17
Drawings..20

Transportation..21
Quick Start..21
Mechanical interface... 23

Robot arm mounting.. 23
Tool mounting.. 24
Controller box installation.. 26

Electrical Interface...26
Introduction.. 26
Electrical warnings and cautions... 27
Controller box I/O...27
IO wiring...29

Output wiring..29
Input wiring...31

Sample wiring.. 32
Digital inputs from a button or Emergency Button... 32

4

Digital Inputs from a sensor, PLC, or another device’s digital output...............................32
Load controlled by a digital output... 33
Digital output pin to a relay.. 34
Digital output pin to an input pin of another machine or PLC...35

TCP network...35
Credentials...35
Robot connection methods.. 36

Connection through a router.. 36
Method 1.. 36
Method 2.. 37

Direct connection to a computer.. 37
Static IP... 39
WiFi..42
SSH... 43

SSH error... 44
Dorna Lab address.. 45
Jupyter Notebook address...45
WebSocket server address..45
Internet access.. 46

Upgrade process... 46
Check for new updates.. 46
Software upgrade.. 47
OS upgrade... 49

Fresh OS image...50
Upgrade current OS...51

Expand the file system...51
Step by step installation of bullseye...52

Update the time zone...55
Update the configuration..56

Motion concepts.. 57
Coordinate system...57

Units...57
Joint assignment..57
Joint limit.. 59
Reference frames.. 60

BRF: Base reference frame... 60
WRF: World reference frame... 60
FRF: Flange reference frame...60

5

TRF: Tool reference frame... 60
TCP: Tool center point... 60

Joint space...60
Assigning values to the joints...61

Auto assigning values to the auxiliary axes... 61
Cartesian coordinates..62
Tool Matrix..62

Types of motion... 64
Joint move (jmove)...64
Line move (lmove)... 64
Circle move (cmove).. 65

The dynamic of a motion... 66
How to pick the right value...67

Continuous motion...67
Absolute and relative motion... 69

Auxiliary axes...69
General notes.. 69
Setup... 69

Scenarios...69
Definition..70

Example... 71
Configuration..71
Wiring...73
Operation... 75

Command server... 75
Introduction.. 75
Server address.. 75
Data format.. 76
Messages.. 76

Motion.. 77
Inputs... 77
Status...78
Command response...78
Alarm..78

Commands.. 79
Format..79
Order of commands... 79

Normal priority queue...79

6

High-priority queue...79
Status of a command and its life cycle.. 80
List of commands...81

jmove... 81
lmove... 84
cmove.. 86
halt... 88
alarm.. 89
pid.. 91
sleep.. 94
input... 95
probe..97
iprobe...99
output...101
pwm... 103
adc... 106
joint.. 107
axis...109
motor.. 111
tool... 113
version..115

Dorna Lab... 117
URL address.. 117
Halt button..118
Alarm information...118
Real-time orientation..118
Jogging...118
Motors.. 119
Hand training... 120
Setup... 120
3D view.. 120
I/O.. 120
Script..121
Log...121
Blockly editor... 121
Shell viewer... 121
Python editor..121
Processes.. 121

7

End a process..121
Duplicate and run a process.. 122

Info...122
Auxiliary axes...122
Emergency stop...122
Startup programs... 122
Keyboard and Joystick...123
Jupyter Notebook...123

Create a kernel.. 123
Shutdown a kernel... 123
Relaunch the server...123

File management... 124
Exploring the files...124
Programs location..124
Transfering files... 124

Python API..125
Useful links.. 125
Robot OS Python environment.. 125

Add a python library...125
Install the API...126
Dorna class..127

Getting started... 127
Connection...128

connect(host="localhost", port=443, timeout=5).. 128
close().. 129

Command status..129
track_cmd().. 129

Sending command...130
play(timeout=-1, **kwargs)...130
play_dict(cmd={}, timeout=-1).. 133
play_json(cmd=’{}’, timeout=-1)... 133
play_script(file=””, timeout=-1)... 133

Messages...135
last_cmd().. 135
last_msg().. 135
union()..135
val(key=”cmd”)... 135

Move.. 136

8

jmove(timeout=-1, **kwargs)..136
lmove(timeout=-1, **kwargs)..136
cmove(timeout=-1, **kwargs)...137

Stop..137
halt(accel=None)..137
get_alarm()...138
set_alarm(enable=None)... 138

Joint and TCP.. 138
get_all_joint()... 138
get_joint(index=None)..138
set_joint(index=None, val=None)...138
get_all_pose().. 139
get_pose(index=None)...139
get_tool()..139
set_tool(r00=None, r01=None, r02=None,r10=None, r11=None, r12=None,
r20=None, r21=None, r22=None, lx=None, ly=None, lz=None)............................. 139

I/O.. 140
get_all_output().. 140
get_output(index=None).. 140
set_output(index=None, val=None, queue=None)...140
get_pwm(index=None)...140
set_pwm(index=None, enable=None, queue=None)...140
get_freq(index=None).. 141
set_freq(index=None, freq=None, queue=None)...141
get_duty(index=None)..141
set_duty(index=None, duty=None, queue=None)..141
get_all_input().. 141
get_input(index=None)...141
get_all_adc().. 142
get_adc(index=None)...142

Wait and delay... 142
probe(index=None, val=None)...142
iprobe(index=None, val=None).. 143
sleep(val=None)...143

Setting..143
get_motor().. 143
set_motor(enable=None)... 144
get_axis(index=None)..144
set_axis(index=None, usem=None, usee=None, pprm=None, tprm=None,

9

ppre=None, tpre=None)... 144
get_pid(index=None)..144
set_pid(index=None, p=None, i=None, d=None, thr=None, dur=None).................. 145

Info...145
version()... 145
uid()..145

Log...145
log(msg)... 145
logger_setup(file="dorna.log")..145

Event..146
get_all_event()... 146
add_event(target=None, kwargs={}).. 146

Format of the target..146
target(msg, union, **kwargs)..146

.clear_event(target=None)... 146

.clear_all_event()... 147
Example... 147

Troubleshooting...148
No LEDs are on upon power up.. 148
No connection to the robot’s web interface..148
The robot fails to boot.. 149
Joint and position lost.. 149
High-temperature motors...149

Maintenance...149
Check for upgrade... 149
Cables and wires... 149
Belts...150
Connectors.. 150

10

Introduction

How to read this manual
This manual contains instructions for installing and programming the robot. The manual is
intended for the robot integrator, who must have basic mechanical and electrical training and be
familiar with elementary programming concepts.

Robot arm and controller box

Robot arm and controller box.

11

Robot parts
● Axes and joints: The Dorna TA robot has six rotating axes (joints) labeled as axis0 to

axis5. We sometimes use the term joint instead of axis and label them as joint0 to
joint5 or just j0 to j5.

● Base: The robot's lower fixed and stationary part is called the base and is used for
mounting the robot to a surface.

● Flange: The robot flange refers to the interface or mounting point at the robot arm's end.
It is designed to provide a secure connection between the robot and various
end-effectors, tools, or fixtures.

● Motors: The robot has six motors labeled as motor0 to motor5, or just m0 to m5
● Encoders: The robot has six encoders labeled as encoder0 to encoder5, or just enc0

to enc5.

What do the boxes contain?
When you order the robot, you receive two packages.
The first package contains

● Robot arm.
● Robot cable(s) (cables connecting the robot arm to its controller box).

The other package contains
● Controller box.
● Ethernet cable.
● Power cable compatible with your region.

Where to find more information
● For technical support, submit a query at: https://dorna.ai/contact/
● Tutorials: https://dorna.ai/tutorial/
● Programming examples: https://github.com/dorna-robotics/example
● Online version of this document is available here.

Safety
The robot body weighs less than 10 kg however, it can move fast and cause injuries, especially
when certain end-effectors are attached to its flange (e.g., a sharp tool or a laser). The robot
also has pinch points where robot joints can squeeze a finger.
It is imperative that you follow the guidelines of ISO 12100:2010 and ISO 10218-2:2011 and
conduct a risk assessment of your complete robot cell, including the Dorna robot, its
end-effector, and all adjacent equipment.

12

https://dorna.ai/contact/
https://dorna.ai/tutorial/
https://github.com/dorna-robotics/example
https://docs.google.com/document/d/e/2PACX-1vREVnZko40vUdsyAh_eXLDqJqzQOMhGVfBrmxJwYIEqkeODHFd0Td2lQsCdH0py49QzZSrQbgjh4eHF/pub

Note

● Handle the robot with care.
● The Dorna TA series is equipped with passive brakes.
● Inspect the robot arm and its controller box for damages. If either

appears damaged, do not use them and contact us immediately.
● Do not modify or disassemble the robot arm or the controller.
● Do not use or store the robot and its controller in a humid

environment.
● Use the proper AC power source, according to your robot setting,

to operate the robot.
● If the robot tips and falls from a height, it may cause an injury and

certainly get damaged.

The brakes
Dorna TA model has a braking mechanism that activates when the power is abruptly
disconnected from the robot, preventing crashing and damaging the robot or workpiece.

Note

● The brakes are designed to slow down the free fall of the robot.
● Brakes are not designed for total position lock.

Power supply
The robot power supply is compatible with 115/230 Vac. However, before turning on the robot
controller, you have to make sure that the right voltage is selected on the controller. Otherwise,
it will damage the robot.
The robot comes with a preselected voltage based on the customer region and is printed on a
label attached to the controller. Double-check the operating voltage printed on the controller
box, and if you need to change it, follow the instruction below.

1. An opening is available on top of the controller box to access the power supply switch.
Access the power supply red switch on top of the controller and change it according to
your AC input.

13

Robot cables
Always connect the robot cables before turning on the robot.

1. Attach one side of the robot DB-25 and DB-9 cable to the back of the robot base and the
other side to the back of the controller. Ensure the connections are secure using the
screws available on the DB shells.

Note

● Always use the cables provided with the robot.
● Contact us if you need to change or extend the robot cables.
● Make sure that the robot cables are straightened and not twisted.
● Make sure the connections are secure using the screws on the

robot cables.

Motors
The robot does not have mechanical brakes. When a motor loses its power, it can cause the
robot to collapse, fall and potentially damage itself and other surrounding objects. Here are
some cases where the motors can lose power:

● Motions with high speed, acceleration, or jerk.
● Applying too much torque on the motors.
● Turning the controller off or losing power.
● Failure in the motors, cables, or drivers.
● When the robot hits an object.

IO wiring
● Always run the wiring before turning on the robot.
● Always use shielded and flexible cables for IO wiring to minimize EMI noise and

withstands continuous motion without degrading data or signal transmission.

Operation environment
● Prevent water and dust from entering the robot arm or controller box.
● In a dusty environment, keep the controller box inside a cabinet with proper cooling and

airflow.
● Do not operate the robot above 50° C (122° F).

14

● In the presence of high electromagnetic interference (EMI) noise, keep the robot
controller inside a metallic cabinet and properly shield all the cables to reduce the EMI
effect.

Emergency stop
You can configure and set up an emergency stop push-button for the robot to stop the robot
immediately and prevent it from executing any further commands.
The emergency button connects to the robot's digital inputs and sends the robot into an alarm
mode when the associated input pin gets triggered.

● Visit the wiring section to learn how to connect the emergency stop button to the robot.
● Visit the emergency stop section in Dorna Lab to activate and configure this feature.

Safety function
Dorna robots are equipped with special safety functions purposely designed to enable
collaborative operation, where the robot system operates without fences and/or with a human.
Collaborative operation is only intended for non-hazardous applications, where the complete
application, including tool/end effector, workpiece, obstacles, and other machines, is without any
significant hazards according to the risk assessment of the specific application.
When the robot motors are enabled, the robot's motion planner and closed-loop feedback
system continuously adjust the robot's orientation. The safety function compares the actual and
planned positions of the robot, activating an alarm and stopping the robot immediately if a
certain amount of error (error threshold) persists for a specified duration (error duration). This
helps the robot to detect collisions with an external object.
The sensitivity of the safety function can be configured based on your application and by
adjusting the error threshold and the error duration parameter. The two parameters can be set
via the PID commands or Dorna Lab.

Note

● When increasing the error threshold or duration, it is good to
consider that:

○ The robot becomes less sensitive to external forces.
○ More risk assessments are required as the robot is less

sensitive to detect collisions.
○ The robot can operate at a higher speed or larger payload

before entering an alarm.

15

○ The robot can collide with an object without entering an
alarm mode.

● When decreasing the error threshold or duration, it is good to
consider that:

○ The robot becomes more sensitive to external forces and
can go into an alarm mode easier.

○ This mode is recommended when operating the robot
around a human or sensitive object.

○ Now, you must operate the robot at a lower speed or
payload.

Risk assessment
One of the most essential things an integrator needs to do is perform a risk assessment.
In many countries, this is required by law. The robot itself has partly completed machinery, as
the safety of the robot installation depends on how the robot is integrated (e.g., tool/end effector,
obstacles, and other machines). It is recommended that the integrator uses ISO 12100 and ISO
10218-2 to conduct the risk assessment. Additionally, the integrator can use the technical
specification ISO/TS 15066 as additional guidance. The risk assessment that the integrator
conducts shall consider all work tasks throughout the lifetime of the robot application, including
but not limited to

● Teaching the robot during set-up and development of the robot installation.
● Troubleshooting and maintenance.
● Normal operation of the robot installation.

A risk assessment must be conducted before the robot arm is powered on for the first time. A
part of the risk assessment conducted by the integrator is to identify the proper safety
configuration settings and the need for additional emergency stop buttons and/or other
protective measures required for the specific robot application.
If the robot is installed in a non-collaborative robot application where hazards cannot be
reasonably eliminated, or risks cannot be sufficiently reduced by using the built-in safety-related
functions (e.g. when using a hazardous tool/end effector), then the risk assessment conducted
by the integrator must conclude the need for additional protective measures (e.g., an enabling
device to protect the operator during set-up and programming).
Dorna Robotics identifies the potential significant hazards listed below as hazards that the
integrator must consider.
Note: Other significant hazards can be present in a specific robot installation.

1. Penetration of skin by sharp edges and points on the robot belts, joints, or tool/end
effector.

16

2. Penetration of skin by sharp edges and sharp points on obstacles near the robot track..
3. Bruising due to contact with the robot.
4. Sprain or bone fracture due to strokes between a heavy payload and a hard surface.
5. Consequences due to loose bolts that hold the robot arm or tool/end effector.
6. Items falling out of tool/end effector, e.g., due to a poor grip or power interruption.
7. Mistakes due to different emergency stop buttons for different machines.
8. Mistakes due to unauthorized changes to the safety configuration parameters.

Product specification

Specs

Model Dorna TA

Mechanical

Payload 2 kg / 3.3 lb (max 2 kg / 4.4 lb)

Reach 500 mm / 19.7 in

Degrees of freedom 6 rotating joints

Repeatability 0.1 mm / 0.0039 in

Axis movement arm Range of motion Max speed

Axis 0 [-160, 180] 180 deg/s

Axis 1 [-90, 190] 180 deg/s

Axis 2 [-150, 150] 180 deg/s

Axis 3 [-160, 170] 180 deg/s

Axis 4 [-170, 160] 180 deg/s

Axis 5 [-179, 179] 180 deg/s

Tool speed 1,000 mm/s / 39.37 in/s

Ecnoders Absolute (no homing required)

Brakes Passive braking circuitry

17

Physical

Robot arm body weight 9.5 kg / 21 lb

Robot arm footprint 116mm X 180mm

Robot arm material Aluminum

Controller box weight 3.8 kg / 8.4 lb

Controller box dimension (W × H × D) 280 x 120 x 220 mm / 11.02 x 4.72 x 8.66 in

Controller box material Steel and plastic

Robot cable length 3 m / 118.11 in

Attachment methods Floor / ceiling

Robot arm IP classification IP54

Working temperature 0 - 50° C

Inputs and outputs

Digital inputs 8 pins, 24 V

Digital outputs 8 pins, 24 V

PWM 2 channels, 3.3 V

Total I/O power supply 2 W

Auxiliary axes 2 axes (step/dir interface)

Encoder inputs 2 encoders (quadrature A, B, and X index, 3.3 V)

Electrical

Power supply 100-240 VAC (selectable), 47-440 Hz

Power consumption 100 W using a typical program (350 W max)

Interface

Programming Dorna Lab (web interface)

Python API and Jupyter notebook

18

Blockly (drag and drop)

Socket API

Communication Gigabit Ethernet (TCP/IP)

2.4 GHz and 5.0 GHz IEEE 802.11ac wireless

2 x USB 3; 2 x USB 2.0

19

Drawings

20

Transportation
Only transport the robot in its original packaging. Save the packaging material in a dry place if
you want to move the robot later.
When moving the robot from its packaging to the installation space, hold all the joints and
ensure they are not falling. Hold the robot in place until all mounting bolts are securely tightened
at the robot's base.

Quick Start
This is a quick instruction on how to set up the robot and run a simple program. You still need to
review the manuals for more information:

● Mount the robot: Mount the robot arm securely on a flat, sturdy surface with 4 x M5
screws.

● Connect the robot cables: Make sure that the controller box is close enough to the
robot and you can attach the robot cables to it.

○ Dorna TA: Attach one side of the robot DB-25 and DB-9 cable to the back of the
robot base and the other side to the back of the controller. Ensure the
connections are secure using the screws available on the DB shells.

● Connect the robot to a router: Attach the robot controller to a router via an Ethernet
port available on the robot controller. Make sure that your computer is also connected to
the same router.

21

Unset

● Turning on the robot: The robot is compatible with 115/230Vac. However, before
turning on the controller, you have to make sure that the right voltage is selected on the
controller. Otherwise, it will damage the robot. The robot comes with a preselected
voltage based on the customer region and is printed on a label attached to the controller
box. Please verify the operating voltage and make any necessary adjustments before
proceeding. Please follow the instructions below if you need to change the operating
voltage. Once you have selected the appropriate AC voltage, connect one end of the AC
power cable to the back of the controller box, and connect the other to the AC plug.

○ Dorna TA: Access the power supply red AC input switch on top of the controller,
and change it according to your AC input.

● Find the robot IP address: Use IP scanner software (example) to find the IP address of
the robot attached to the router. For simplicity of the notation, we assume that the IP
address of the robot is 10.0.0.14 in this tutorial.

● Open Dorna Lab: Dorna Lab is more or less the equivalent of the teach pendant’s
interface of a traditional industrial robot. Open a Google Chrome on your computer and
type in the Dorna Lab URL at http://robot_ip_address, where the
robot_ip_address is the IP address of the robot we found in the previous section (for
example, if the IP address of the robot is 10.0.0.14 then the Dorna Lab address is
http://10.0.0.14).

● Run a simple program: In Dorna Lab, navigate to the Script section under the Main tab.
Here is where you can write commands and submit them to the robot.

○ Copy and paste the following commands in the script section.
○ Enable the Track Line option to see which lines run during the operation.
○ Make sure that no tool is attached to the robot and that the robot is free to move

without hitting any object.
○ Click the Play button to submit and run the code to the robot.

{"cmd":"motor","motor":1}
{"cmd":"jmove","rel":0,"j0":0,"j1":10,"j2":-10,"j3":0,"j4":0,"j5"
:0, "vel":50,"accel":500,"jerk"2000}
{"cmd":"lmove","rel":1,"x":-150, "vel":100, "accel": 500,
"jerk"2000,"cont":1,"corner":20}
{"cmd":"lmove","rel":1,"y":150}
{"cmd":"lmove","rel":1,"z":150}
{"cmd":"lmove","rel":1,"y":-300}
{"cmd":"lmove","rel":1,"z":-150}

22

https://www.advanced-ip-scanner.com/
https://www.google.com/chrome/
http://robot_ip_address

{"cmd":"lmove","rel":1,"y":150}

● Resting the robot: If the robot is not operational (between the shifts), you can put the
robot in rest, by putting the robot in a safe orientation and turning the motors off (via
Dorna Lab). This way, the robot controller is still running, and you just de-energize the
motors.

● Turning off the robot:When turning off the robot, all the motors lose their power. So, it
is important to put the robot in a safe orientation before turning off the robot. Dorna TA is
equipped with passive brakes, which slow down the robot when the motors are off.
When ready, just switch off the power button on the controller to turn off the robot.

Mechanical interface

Robot arm mounting
Install and operate the robot either on a floor or to a ceiling. The robot's base has 6 counterbore
clearance holes which can be used with M5 screws. The screws must be tightened with 20 Nm
torque.
Mount the robot on a sturdy, vibration-less surface that can withstand at least ten times the full
torque of the base joint and at least five times the weight of the Robot Arm. If the robot is
mounted on a linear axis or a moving platform, then the acceleration of the moving mounting
base is very low. A high acceleration might cause the robot to make an alarm stop.

Note

Make sure the robot arm is properly and securely screwed in place.
Unstable mounting can lead to accidents.

23

Dorna TA mounting holes. Use at least 4 x M5 screws. All measurements are in mm.

Tool mounting
You can mount different tools (end effectors) to the robot flange four M5 tapped holes on the
robot flange. For compatibility with existing tools that we offer with Dorna 2 series robots, there
are two M3 tapped holes on the robot flange that could be used for tool mounting as well. Do
not use bolts that extend beyond 5 mm to mount the tool. Very long screws can press against
the bottom of the tool flange and damage the robot.

24

Note

● Ensure that the tool is properly and securely screwed in place.
● Use at least two screws to attach the tool securely.
● Ensure that the tool is constructed so that it cannot create a

hazardous situation by dropping a part unexpectedly.
● Mounting a tool on the robot with screws extending beyond 6 mm

can push into the flange and cause irreparable damage, leading
to end joint replacement.

Dorna TA tool output flange is where the tool is mounted at the robot's tip. Dorna TA follows
the All measurements are in mm.

25

Controller box installation
The controller box can be placed on the ground. A clearance of 50mm on each side of the
controller box is needed for sufficient airflow.

Note

● Make sure the controller box and cables do not come into contact
with liquids.

● A wet controller box could cause fatal injury.
● Place the controller box (IP44) in an environment suited for the

IP rating.

Electrical Interface

Introduction
This chapter describes electrical interface groups for the robot. The main electrical interface
groups are listed below:

● Controller I/O
● Ethernet port
● USB ports

26

Electrical warnings and cautions
● Voltage beyond the specified range of the I/O channel can potentially harm the controller

board.
● Ensure the controller is powered off when connecting an I/O device to avoid potential

damage. Connecting an I/O device while the controller is operational may harm the
controller.

● To minimize electromagnetic interference (EMI) noise on the I/Os, it is crucial to use
shielded cable and ensure proper grounding of the shield to the controller box ground
pin.

● To avoid potential malfunctions, utilize relays and an external power supply instead of
relying solely on the controller IOs to power and control external devices. It is necessary
to opt for MOSFET or solid-state relays instead of magnetic relays, as the latter can
draw excessive current from the controller, leading to controller crashes.

Controller box I/O
On the front panel of the controller box, the I/O pins are accessible through a 22-position
terminal block header connector with male pins. The pitch of the connector is 5.08 mm. Use a
compatible terminal block plug to connect your wires to the I/O pins (sample).

27

https://a.co/d/4NIxKLT
https://a.co/d/4GDInW7
https://www.digikey.com/short/nft8n233

There are multiple I/O connections available on the controller box and the robot arm.
● I/O power supply shared between the digital inputs, outputs, and PWM channels is 2W in

total.
● The total current on all the I/O pins should not exceed 83 mA.

Type Description

Digital inputs 8 pins, 24 VDC

● Labeled as in0,...,in7.
● With approximately 100 KHz update rate, the controller sends a message upon any

change in their values, reporting the new value.
● Use the input command to read the value of input pins.
● Voltage level 0 at an input pin corresponds to digital value 0, and voltage level 24

VDC at an input pin corresponds to digital value 1.

Digital outputs 8 pins, 24 VDC

● Labeled as out0, ..., out7.
● Use the output command to read or set the output pins.
● Digital value 0 appears as 0 VDC, and digital value 1 appears as 24 V DC at output

pins.
● At the startup, all output pins are initialized to 0.

PWM channels 2 pins, 5 / 3.3 VDC

● Labeled as pwm0,pwm1.
● PWM pins generate a pulse width modulated signal with a specific frequency (freq)

and a specific duty cycle (duty).
● Use the PWM command to read or set the PWM channels.
● Voltage level of PWM signals for Dorna TA is 3.3 V

28

Dorna TA PWM signal levels

IO wiring

Output wiring
The output pins of the front panel of the Dorna TA are optocoupler-isolated open-collector type.
Here we explain how the output pins work and how you must connect your load. The I/O pins of
the main processor inside the controller box are isolated via optocouplers from the I/O pins
available to the user to protect the main processor against external electrical shocks or noise.
Transmitting a zero on the output pin turns on the LED inside the optocoupler, enabling the
optocoupler output. When the optocoupler output is enabled, the current flows from the DC
power source (+24V) through the Load and a transistor to the DC power GND. This current will
turn the load on. This way, the output pins of the controller can be used to drive and open/close
DC loads. Each output uses a transistor to drive the load with sufficient current. The following
diagram depicts the output circuit.

29

The internal 2W power supply is responsible for providing the current on the output pins of the
front panel; the total current on all the output pins of the front panel should not exceed 83 mA.
The red arrow demonstrates the current path when the output is zero. When the output is equal
to the logic one, there would be no current, and consequently, the load would be off. This kind of
output is common in industrial sensors and is known as NPN output. Therefore to turn on the
load, you should set the output pin to 0 and to turn it off you should set the output to 1.
If you intend to use the output as a signal (Not turning a load on/off), you should pull up the
output pin to the (+24V) with a pull-up resistor (a 10K ohm resistor is sufficient for most
applications). In this case, the voltage measured on the output pin will be 24V when the output
is set to 1 and 0V when the output is set to 0. The following image shows the connection of the
pull-up resistor to the output pin.

30

Input wiring
Input signal is connected through an optocoupler to the main processor of the Dorna controller.
Any voltage between 0 V and 12 V is interpreted as logic signal 0, and a voltage from 12 V and
24 V is interpreted as logic signal 1.
We highly recommend using shielded wires to connect the input pins and grounding the cable
shield to the controller box ground.

31

Sample wiring
The I/Os can be used to drive equipment like pneumatic relays directly or for communication
with other PLC systems. Examples below depict some frequent scenarios that IO pins are used
in automation applications:

Digital inputs from a button or Emergency Button
This example illustrates connecting a simple button or an emergency button to a Digital input
pin.

Digital Inputs from a sensor, PLC, or another device’s digital output

We use a shielded cable to connect an output pin of a sensor, or a PLC or another controller
device to an input pin of Dorna controller. We will need to establish a common ground between
the two devices and connect the shield of the cable to the controller ground.

32

Load controlled by a digital output
This example shows how a load is controlled by Digital outputs when connected. The load could
be a small DC motor or an LED light or other load that does not consume power less than the
maximum power of the controller board (2W).

33

Digital output pin to a relay
In many scenarios, the user would like to control a high-power load, such as an actuator, or
electric magnet, with a digital output pin using a relay circuit. We recommend using Mosfet
relays as they consume very little power and have a fast response time. The connection will be
as follows.

Note

It is necessary to opt for MOSFET or solid-state relays instead of
magnetic relays, as the latter can draw excessive current from the
controller, leading to controller crashes.

34

https://a.co/d/4NIxKLT
https://a.co/d/4GDInW7

Unset

Digital output pin to an input pin of another machine or PLC
You can use the digital I/O to communicate with other equipment if a common GND (0V) is
established and if the machine uses PNP technology, see below. Here we show how the output
of the controller box can be connected to the input pin of another controller using a pullup
resistor. You can use the same wiring to connect an output pin of the Dorna controller to an
input pin of the Dorna controller (you will not need to establish a common ground for this
configuration as both pins share their ground internally).

TCP network
In order to monitor and control the robot, you need to establish a TCP connection with the robot.

Credentials
The default hostname, username, and password for the robot controller is dorna

hostname
dorna

35

Unset

#username
dorna

password
dorna

Robot connection methods
Any device connected to a Local Area Network is assigned an IP address. In order to connect to
the robot controller (Dorna Lab,WebSocket, SSH, API, remote access, etc.), we need the IP
address of the robot controller. Many methods and online resources discuss this issue
(example). Here we discuss two main common ways of setting up the robot TCP network and
finding the robot IP address:

● Connect the robot to a router
● Directly connect the robot to your computer via Ethernet cable

Connection through a router
Connect the robot controller to a router and then the robot becomes visible to all the devices
connected to that router. We recommend using an Ethernet cable for the connection unless you
have set up the robotWiFi to connect it to your wireless router. Follow the steps below to find
the local IP address of the robot.

Method 1
1. Open the Command Prompt (CMD) on your Windows computer or Terminal window

on your UNIX device and try all the commands below (one of them usually works) to find
the IP address assigned to the robot:

ping dorna.local -4
ping dorna.home -4
ping dorna -4

36

https://www.raspberrypi.org/documentation/remote-access/ip-address.md

2. This will ping the robot using its hostname (dorna). If the ping is successful, you should
see the IP address of the robot in the output.

Method 1 works in most cases. If method 1 fails (for example when multiple Dorna controllers
are connected to the same router), then use the next method to find the IP address of the robot.

Method 2
1. Connect your computer to the same router as the robot is connected, and find your

computer's local IP address using the instructions listed here.
2. For simplicity and better understanding, we assume that your computer's local IP

address is 10.0.0.7 (this is just an example, and your computer IP address can be
totally different). Then the robot controller IP address is in the form of 10.0.0.x.
Where x is any number from 0 to 255 (your computer already takes 7).

3. Use any of the following methods to find the list of all the devices connected to the
router:

a. IP scanner software: Download and install an IP scanner software (example) on
your computer and put 10.0.0.0-255 to search for all the devices connected to
the same router as your computer is connected.

b. Router devices list: In a web browser, navigate to your router’s IP address
(usually the ends with digit 1, so in this case: http://10.0.0.1), which is
usually printed on a label on your router; this will take you to a control panel.
Then log in using your credentials, usually printed on the router or sent to you in
the accompanying paperwork. Browse the list of connected devices or similar (all
routers are different)

4. Once you have the list of all the devices connected to your router, search for a device
with dorna in their name (it can be dorna, dorna.local, etc. In some cases, routers
show the robot name under Raspberry Pi) and find its IP.

Direct connection to a computer
In this section, we will provide a step-by-step guide to establish connection between the robot
controller and your Windows computer using an Ethernet cable. One end of the cable should be
connected to an Ethernet port on your Windows computer, while the other end should be
plugged into the Ethernet port of the robot controller box.

37

https://www.avast.com/c-how-to-find-ip-address
https://www.advanced-ip-scanner.com/
http://10.0.0.1

Note

The method below is for a Windows computer, but the procedure is very
similar on other operating systems.

The robot controller is connected to a computer via an Ethernet cable.

1. Go to the Network Connections page on your Windows computer. You can access this
page by going to your Control Panel > Network and Sharing Center > Change
adapter settings.

2. Next, go toWi-Fi > Properties > Sharing, check both options in the Internet
Connection Sharing section, and select the proper Ethernet connection the robot
connects to under the Home networking connection. Click OK and close theWi-Fi
Status page. If you applied any changes in this section, then it is recommended to
restart your computer before going to the next steps.

38

Unset

3. Next, on the Network Connections page, go to the Ethernet (the one that the robot is
connected to) > Properties > Internet Protocol Version 4 (TCP/IPv4). Select Obtain
an IP address automatically and Obtain DNS server address automatically.

4. Power on your robot.
5. Wait a few seconds for the robot to obtain an IP address from your computer.
6. Open the Command Prompt (CMD) on your Windows computer or Terminal window

on your mac device and type the following command to check the IP address assigned
to the robot:

ping dorna.local -4

7. This will ping the robot using its hostname (dorna). If the ping is successful, you should
see the IP address of the robot in the output.

That's it! Your robot is now connected to your Windows computer via Ethernet and has been
assigned a dynamic IP address.

Static IP
The robot OS utilizes DHCP (Dynamic Host Configuration Protocol) to automatically assign an
IP address to the robot whenever it is rebooted. Having a static IP address for your robot
ensures that you can always find it at the same fixed IP address rather than a dynamic address
that changes every time the device is rebooted. It also helps avoid confusion when multiple
robots are connected to your network.
To set a static IP address for your robot, SSH to your robot controller and follow these steps:

1. Determine your network setup:
a. Identify the type of network connection: wlan0 for wireless or eth0 for Ethernet.

We recommend using eth0 as it is a more reliable communication with the robot.
b. Find the robot's assigned IP address using the hostname -I command. It’s

safest to reuse this for its static IP so that you can be sure the latter hasn’t
already been to another device on the network. If not, make sure another device
isn't already using it.

39

c. Locate your router's gateway IP address using the ip r | grep default
command. The gateway IP address varies depending on the router model but
typically starts with 192.168.

d. Note your router's DNS IP address using the sudo nano /etc/resolv.conf
command. This is typically the same as its gateway address but may be set to
another value to use an alternative DNS – such as 8.8.8.8 for Google or
1.1.1.1 for Cloudflare.

40

Unset

Note the IP address after nameserver – the DNS address – and then press
Ctrl + X to close the file.

2. Edit the dhcpcd.conf file inside the robot:
a. Open the file using the sudo nano /etc/dhcpcd.conf command.
b. Add the following lines at the bottom of the file, replacing the emboldened names

with your own network details:

interface NETWORK
static ip_address=STATIC_IP/24
static routers=ROUTER_IP
static domain_name_servers=DNS_IP

c. NETWORK: The type of network connection is wlan0 for wireless and eth0 for
Ethernet.

d. STATIC_IP: The desired static IP address for the robot.
e. ROUTER_IP: The gateway IP address for your router on the local network.
f. DNS_IP: The DNS IP address (typically the same as your router’s gateway

address).

41

g. Save and close the file using Ctrl + X, then Y, and ENTER.
3. Reboot your robot:

a. Restart your robot using the sudo reboot command.
b. After reboot, check if the static IP address is set using the hostname -I

command.

WiFi
WiFi has been enabled by default on the robot. But you still need to set the SSID and
Password of your wireless network.

Note

Notice that the WiFi signal is not as reliable as the Ethernet LAN. If you
are still willing to use WiFi we recommend connecting a USB WiFi
adapter to your controller USB port, for better and more reliable
communication.

42

Unset

There are multiple ways to configure the WiFi, and we cover one of them here:
1. SSH to your robot controller.
2. In the command line, type in sudo raspi-config, and this will bring you to your

controller configuration tool.
3. Navigate to Network Options (usually listed as number 2) and then Wireless LAN

(usually listed as N2).
4. Follow the steps and set the SSID and Password of your wireless network.

SSH
SSH has been enabled by default on the robot controller. Once you have the IP address of the
robot controller, open a terminal (cmd) and use the SSH command and the robot IP address to
SSH to the robot.

ssh dorna@robot_ip_address

43

Unset

Note

Notice that the default hostname, username, and password for the robot
controller is dorna.

SSH error
Sometimes, when we run the SSH command, we get an error like this:

To solve this issue, run the following command and try to SSH again.

ssh-keygen -R robot_ip_address

For example, in this case, we run the following command (assume that the robot ip is
10.0.0.14):

44

Unset

Unset

Unset

ssh-keygen -R 10.0.0.14

You can now SSH to the robot again.

Dorna Lab address
Once you have the robot IP address, you can access Dorna Lab by typing the robot IP address
in a browser http://robot_ip_address (Chrome browser is recommended). For example

Robot IP address is 10.0.0.14
http://10.0.0.14

Jupyter Notebook address
Once you have the robot IP address, you can access the Jupyter Notebook server in a browser
at http://robot_ip_address:8888 (Chrome browser is recommended). For example

Robot IP address is 10.0.0.14
http://10.0.0.14:8888

WebSocket server address
The controllerWebSocket server runs automatically when the controller is turned on. Connect to
the WS server via port 443 of the robot and its IP address (hostname also works sometimes).
The WS URL is ws://robot_ip_address:443. For example,

45

Unset

Robot IP address is 10.0.0.14
ws://10.0.0.14:443

Internet access
The robot does not require internet access during its normal operation. The only time the
internet access is required is during the upgrade process of the robot. If the robot is connected
to a router, then it is connected to the internet if the router also has access to the internet. If the
robot is connected directly to your computer, then it has access to the internet if the computer
itself is connected to the internet.

Upgrade process

Note

Before running the upgrade process, make sure that:

● The robot controller has access to the internet.
● All your sessions and files on the controller are saved since you

need to turn off the controller at some point.
● The robot is in a safe and stable physical position, and no

program is running since the motors lose power during the
upgrade.

Check for new updates
To check for the new software updates, make sure that the robot controller has access to the
internet, then:

1. Open Dorna Lab via browser (If the Dorna Lab page didn’t appear, then you probably
need an update)

2. Go to the Setting > Info.
3. Under the Device section, click on Check for Updates and wait for the robot to check

the latest updates by connecting to the Dorna website.
4. If new updates are available, then follow the upgrade process and run the updates.

46

Unset

Unset

Software upgrade
Follow the steps below to get the latest software (firmware, API and Dorna Lab) for the robot:

1. SSH to the robot controller and run the following line to find the OS version

sudo lsb_release -a

If the Release item is 10 or less (old OS), then you need to first upgrade the OS.
Otherwise, continue

2. Run the following lines (copy/paste all) in the terminal and press Enter to run.
Depending on your internet speed, the process can take a few minutes.

sudo rm -rf /home/dorna/Downloads/upgrade && sudo mkdir
/home/dorna/Downloads/upgrade && sudo git clone -b dorna_ta
https://github.com/dorna-robotics/upgrade.git
/home/dorna/Downloads/upgrade && cd /home/dorna/Downloads/upgrade
&& sudo sh setup.sh dorna_ta

3. Once the upgrade process is completed, you should see the following messages on the
terminal window. Notice that the progress percentage should reach 100% at the end.

47

4. Wait for around 30 seconds, then turn the controller off and on again to complete the
upgrade process.

Note

● Once the upgrade process is completed, you can now access the
Dorna Lab via http://robot_ip_address in your browser.
For example, if your robot IP address is 10.0.0.14, then just
type in http://10.0.0.14 in your browser.

● Most of the time, you must (hard) refresh the Dorna Lab browser
page to see the changes. In this case, press Ctrl + F5 on the
browser.

48

OS upgrade

Note

You will lose all your data on the controller after the OS upgrade. So,
upgrade the robot's OS only if the OS is corrupted or outdated (version
10 or less),

We cover two ways to upgrade your OS:
1. Fresh OS on the SD card: Take out the SD card from the controller box and install a new

OS on it. For some users, this might be difficult as they need to open the controller box.
2. Upgrade the current OS (recommended): This method usually takes longer, but it does

not require opening the controller box and taking the SD card out.

49

Fresh OS image

Follow the steps below to access the controller SD card and install a fresh OS on it:
1. Disconnect the power cable from the controller box.
2. Unscrew the 8 screws on the top lid of the controller box (4 screws are located on each

side of the top lid) and remove the top lid. You should now see the Raspberry Pi and the
SD card inside it.

50

Unset

3. Unscrew the 4 screws that connect the Raspberry Pi to the controller main board. Notice
that the Raspberry Pi pins are connected to the main board. So, gently take the
Raspberry Pi out and disconnect it from the main board.

4. Now you have access to the SD card and take it out.
5. Connect the SD card to your own computer, navigate to the Raspberry Pi software page,

and download the Raspberry Pi Imager.
6. After downloading and installing the imager. Open the software, on the CHOOSE OS

option, select the Raspberry Pi OS (32-bit) (first option). On the CHOOSE STORAGE
option select the SD card connected to your computer. Before clicking on theWRITE,
hold CTRL + SHIFT + X to open the Advanced Options page.

7. In the Advanced Options page:
a. Check the Set hostname option and put dorna as the hostname.
b. Check Enable SSH option and select Use password authentication.
c. Check the Set username and password option and put dorna for both

username and password.
d. You can leave the rest unchanged, and click on the SAVE button.

8. Click onWRITE. This usually takes a few minutes.
9. Once the writing process is over, put back the SD card to the Raspberry Pi. Connect the

Raspberry Pi to the board and make sure that its pins seat perfectly on the controller
board. Tighten the Raspberry Pi and top lid screws. Now Jump to the software upgrade
section to install the Dorna software on your robot.

Upgrade current OS

Note

In this section we will update the version of the OS from 10 (buster) to 11
(bullseye). This process can take up to 1 hour.

Expand the file system

SSH to the robot controller and run df -h / to check the disk space:

dorna@dorna:~ $ df -h /
Filesystem Size Used Avail Use% Mounted on

51

https://www.raspberrypi.com/software/

Unset

Unset

Unset

/dev/root 3.8G 3.0G 636M 83% /

If the Size item is below 4G then follow this part, otherwise jump to the installation section.
Expand the file system by going over the following steps

1. Run sudo raspi-config
2. Go to Advanced Options
3. Select Expand Filesystem
4. Select OK
5. Select Finish
6. Select Yes to reboot (or run sudo reboot manually)

Step by step installation of bullseye
1. SSH to the robot controller and update the repository lists:

$ sudo apt update

2. Install all of the latest packages (and their dependencies):

$ sudo apt full-upgrade

3. Reboot your robot controller to activate any packages that require a reboot:

$ sudo reboot

4. Update to the latest version of the OS firmware:

52

Unset

Unset

Unset

Unset

Unset

$ sudo rpi-update

Another reboot may be necessary after updating your OS firmware.

$ sudo reboot

5. Next, edit your sources.list file to switch your repository list from Buster to
Bullseye:

$ sudo nano /etc/apt/sources.list

Locate the following line and change buster to bullseye:

deb http://raspbian.raspberrypi.org/raspbian/ buster main contrib
non-free rpi

Save your changes (Ctrl+X) and proceed to the next step.
6. Update your repository lists again (this time it will be using the Bullseye-specific

repositories):

$ sudo apt update

7. Install the latest version of Node.js (this helps avoid an error you may receive when
running apt full-upgrade in step 9). This step may take several minutes.

53

Unset

Unset

Unset

Unset

Unset

$ sudo apt install nodejs

Note that you may receive a prompt to Restart services during package
upgrades without asking. If so, choose Yes.

8. Update to the latest version of GCC 8 (this also helps avoid an error in the next step).

$ sudo apt install gcc-8-base

9. Run another full upgrade to install any additional Bullseye requirements and downstream
dependencies:

$ sudo apt full-upgrade

10. Clean up your packages to remove any that are obsolete or no longer used:

$ sudo apt autoclean
$ sudo apt autoremove

11. Next, you need to alter your /boot/config.txt file to enable KMS (the new standard
video driver).

$ sudo sed -i
's/dtoverlay=vc4-fkms-v3d/#dtoverlay=vc4-fkms-v3d/g'
/boot/config.txt

54

Unset

Unset

Unset

$ sudo sed -i 's/\[all\]/\[all\]\ndtoverlay=vc4-kms-v3d/'
/boot/config.txt

12. When you're all done, reboot your robot controller:

$ sudo reboot

13. After a reboot, check to see if everything was updated properly:

$ cat /etc/os-release

This should return the following, with bullseye as the new OS:

PRETTY_NAME="Raspbian GNU/Linux 11 (bullseye)"
NAME="Raspbian GNU/Linux"
VERSION_ID="11"
VERSION="11 (bullseye)"
VERSION_CODENAME=bullseye
ID=raspbian
ID_LIKE=debian
HOME_URL="http://www.raspbian.org/"
SUPPORT_URL="http://www.raspbian.org/RaspbianForums"
BUG_REPORT_URL="http://www.raspbian.org/RaspbianBugs"

Update the time zone
1. SSH to the robot controller and run

55

Unset

Unset

Unset

Unset

sudo dpkg-reconfigure tzdata

2. Select your region to configure your time zone.

Update the configuration
1. SSH to the robot controller and run

sudo nano /boot/config.txt

Append the following lines to the end of the file,

dtoverlay=pi3-miniuart-bt
enable_uart=1

Save the file and exit the editor.
2. Modify the serial port by running

sudo raspi-config

Then:
a. Select Interfacing Options
b. select Serial Port
c. select No
d. Select Yes
e. Select OK
f. Finish and Reboot

56

Motion concepts
In this section we will go over different types of motion that can be achieved by the robot. We
will explain the basic concepts that you need to understand before choosing the right motion
types and parameters for your application.

Coordinate system
The first concept in the design of a motion for a robotic arm is the coordinate system of the
robot. Dorna (and most other robotic arms) work in two main different coordinate systems. The
first one is the joint coordinate system (joint space) and the second one is the Cartesian
coordinate system (Cartesian space). Motion commands can be sent in either space and it is a
user's choice to decide which one to work with.

Units

Type Value symbol

Time Seconds s

Angles Degrees deg

Distance Millimeters mm

Joint assignment
The joints of the robot are numbered in ascending order, starting from 0, as shown here.

57

58

Joint limit
Each joint in the robot has a limited range of rotary motion, known as joint limit (upper and lower
limits).

59

Note

● Depending on the robot’s orientation, tools attached to the robot,
and the robot workspace some additional limits may apply to
each joint.

Reference frames
We use right-handed Cartesian coordinate systems (reference frames). These four reference
frames and the key terms related to them are

BRF: Base reference frame
Static reference frame fixed to the robot base. Its z-axis coincides with the axis of joint 1 and
points upwards, its origin lies on the bottom of the robot base, and its x-axis is normal to the
base front edge and points forward.

WRF: World reference frame
The main static reference frame coincides with the BRF by default.

FRF: Flange reference frame
Mobile reference frame fixed to the robot's flange.

TRF: Tool reference frame
The mobile reference frame is associated with the robot's end-effector. By default, the TRF
coincides with the FRF.

TCP: Tool center point
Origin of the TRF.

Joint space
Joint space or joint coordinate system is the representation of the robot orientation using the
joint values of the robot. We use degrees as the unit of each joint. The robot has 5 joints (axes)
and 3 additional auxiliary axes that can be controlled by the robot (8 joints in total). The robot
joints are denoted by j0, j1, j2, j3, j4, j5 and j6, j7 for the auxiliary axes.
The value (angle in degrees) associated with joint (), ji(j0, j1, …, j5),𝑖 𝑖 = 0, 1, ..., 5
will be referred to as ji

● j0: Rotation of BRF around the z-axis of C0 to align the x-axis of BRF and C0.

60

● j1: Rotation of C0 around the z-axis of C1 to align the x-axis of C0 and C1.
● j2: Rotation of C1 around the z-axis of C2 to align the x-axis of C1 and C2.
● j3: Rotation of C2 around the z-axis of C3 to align the x-axis of C2 and C3.
● j4: Rotation of C3 around the z-axis of C4 to align the y-axis of C3 and C4.
● j5: Rotation of C4 around the z-axis of C5 to align the y-axis of C4 and C5.

Joints 6, and 7 are used for auxiliary axes and can be set for linear rail, z-axis, conveyor belts,
or any other motor or encoder connected or controlled by the robot.

Assigning values to the joints
Setting the robot joints, or the homing process, is the process of identifying the real value of the
joints and assigning them to the robot. Multiple hard stops are available on the robot and can be
used to identify the true value of a joint. In the homing process, we put the robot in a specific
orientation, where the value of each joint is known to us.

Note

The robots are pre-calibrated and equipped with absolute encoders. So,
the homing process is not required. Use the homing process only if you
need to re-calibrate the robot.

In the Dorna lab, disable the motors, and navigate to the set joint section. All joints 0 to 5 will
be set to zero when their value is set in this section. Therefore, you will need to set joint values
only when the corresponding joint is at 0 position.

Auto assigning values to the auxiliary axes
If the auxiliary axis of the robot is equipped with a quadrature encoder and an index channel,
the setting of joints can be automated. Here's a summary of the process:

1. Access the Set Joint panel in Dorna Lab.
2. Select the desired auxiliary axis for setting its joint.
3. Enter the new value for the joint and click on the motion direction.
4. The associated auxiliary axis starts moving in the specified direction until it reaches its

hard stop.
5. The axis then moves backward until the encoder index channel triggers and goes high

for the first time.
6. The robot assigns the value in the New Value field to the position where the index was

triggered.

61

Note

● This is a very accurate way of setting the value of an auxiliary
axis.

● Make sure the auxiliary axis has a hard stop in the direction of
the motion for the setting joint process.

● Make sure that the auxiliary axis is not touching its hard stop
initially when running the process.

● Make sure the encoder comes with an index channel (I).
● The process uses iprobe command to detect the encoder index

and assign the new value to the axis.
● During the process you will see an alarm appears and

disappears. Do not interrupt the process, until the joint
assignment is completed.

Cartesian coordinates
The Cartesian coordinate system corresponds to the Cartesian coordinates of the robot tool
head with respect to the origin point which is at the bottom on the axis of rotation of j0 in the
three-dimensional space. The coordinates are presented as x, y, z, a, b, c for the robot
and d, e for the auxiliary axes. The first three coordinates of the robot are the x, y, z which
are the respective coordinate values in millimeters. a, b, c represent the rotation vector of
the robot head respect to the robot base in degrees. The definition of the rotation vector can be
found here:
https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation

For the auxiliary axes also their value in Cartesian space is the same as their value in joints
space. Therefore, d = j6, e = j7.

Tool Matrix
When attaching an end of arm tool to the robot, it is important to set the correct parameters for
the tool, so that the coordinates that the robot is reporting, represent the coordinates of the tool
instead of the coordinates of the flange of the robot.
In general, to define the parameters of the tool, you will need to define the transformation matrix
of the tool. The transformation matrix will define the rotation and translation of tool with respect
to the flange of the robot. In general transformation matrices have the following format:

62

https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation

The submatrix r00, r01, r02, r10, r11, r12, r20, r21, r22 indicates the rotation
part of the transformation matrix. The values lx, ly, lz also indicate the translation of the
toolhead in x, y, z direction calculated in mm with respect to the base of the flange
coordinate system as shown in the image below.

Orientation of the robot when all the joints are zero

You can update the tool length based on the tool head that you are using. The correct tool
length value is especially important if you work in the Cartesian coordinate system, and you are
interested in (x, y, z, a, b, c) values of the TCP. If you prefer to work in joint
coordinates, or you are interested in the X, Y, and Z values of the robot flange you might want
to leave the TCP at its default value (default value is 0).

63

Types of motion
Dorna has three main motion commands jmove, lmove, and cmove. In each motion, the robot
starts from its current orientation and moves toward the specified final orientation.

Note

You can send the coordinates of any motion command in both joint
space or Cartesian space. The robot first looks for coordinates in joint
space and if it does not find them in joint space it will look for the TCP
coordinates in Cartesian space.

Joint move (jmove)
jmove commands the robot to move from its current point to a destination point while the joints
are moving uniformly altogether to complete their movements at the same time. This movement
results in a curved path of the TCP in Cartesian space.

Note

● jmove traverses the shortest distance (in terms of motor
rotation), between two points. Therefore, they are a better choice
for high-speed applications.

● This command is usually used when the trajectory of the motion
is not important in the application and it is only important to end
the motion at the specified destination point.

Line move (lmove)
lmove moves the TCP linearly from its current pose to a destination pose. This means that
each joint performs a more complicated motion to keep the tool on a straight line path.

64

Circle move (cmove)
cmove moves the robot TCP on a circle. Circle is a set of points in space that are at the same
distance from a center point and live on a plane. In the robot, a circle is uniquely specified with
three points:

● The initial point of the circle, which is the current position of the robot.
● The final point of the circle, which is the final position of the move,
● A midpoint of the circle, which is a point that the circle will pass through before reaching

the final point.
● Another parameter of the circle is the turn which specifies how many full turns the robot

will make in addition to the initial partial circle that connects the initial point to the final
point through the midpoint (in a partial circle turn is 0).

65

The dynamic of a motion
Each motion command has associated parameters that define the dynamics of the motion along
its trajectory. These parameters are the following:

● vel: The maximum velocity along the trajectory of the motion.
● accel: The maximum acceleration while speeding up and slowing down at the

beginning and end of motion.
● jerk: The maximum value of jerk used in motion planning (jerk is the derivative of

acceleration).
Depending on the type of the motion space that the motion is defined in, the unit of these
parameters will vary

Type vel accel jerk

jmove 𝑑𝑒𝑔
𝑠

𝑑𝑒𝑔

𝑠2
𝑑𝑒𝑔

𝑠3

lmove 𝑚𝑚
𝑠

𝑚𝑚

𝑠2
𝑚𝑚

𝑠3

cmove 𝑚𝑚
𝑠

𝑚𝑚

𝑠2
𝑚𝑚

𝑠3

66

How to pick the right value
Usually, by trial and error you will find the optimal value of velocity, acceleration, and jerk in your
motion command. The optimal values will result in a motion that is done in the shortest amount
of time and has a smooth start and end. Here we will provide a few guidelines to pick the (near)
optimal values for your application.

1. Start with moderate values of vel, accel, and jerk. (see table below)
2. Increase or decrease vel, depending on your load. For higher payloads, you should

limit max vel.
3. Increase or decrease accel values based on the load. accel value defines how fast

you will reach the maximum speed and is limited by the torque that motors can generate.
4. Increase or decrease jerk, depending on the jerkiness of the motion with the

determined vel and accel parameters. The jerk parameter plays a big role in the final
quality of the motion, especially at the start and stop of the motion. Higher jerk values
translate into more vibration at the start and stop. Lower jerk values, translate into
vibration-free and smooth motion. Increase or decrease jerk to find the desired motion
smoothness.

5. For more optimal results, you can go over the steps above once more from the
beginning.

Parameter Moderate value Upper limit for small
payloads

Upper limit for high
payloads

Joint Cartesian Joint Cartesian Joint Cartesian

vel 100 200 500 1000 250 500

accel 700 2000 3000 5000 1000 3000

jerk 3000 8000 10000 50000 5000 10000

Continuous motion
In many applications, you might need to create a continuous transition from one motion to
another motion without full stop at the end of each motion. Dorna motion planner makes it
possible with an advanced feature called continuous motion.
With continuous features activated, the controller will connect each new motion to the previous
motion that it has in its queue. As soon as the controller runs out of motion commands in its
queue, it will stop at the end of the last motion command.
Continuous motion only applies to consecutive jmove or lmove motion commands. In other
words, it can only connect jmove commands or lmove commands together. If after a jmove

67

command, there is a lmove command, the robot will stop at the end of the jmove command
and will start from a stop with the lmove command, and vice versa.
Since by physics laws, it is impossible to traverse two lines that are not collinear in space,
without a full stop at the sharp corner, the continuous motion feature, does two things to
traverse connecting lines smoothly:

1. It makes the corners of connecting lines rounded by replacing the corner with a smooth
curve that gradually changes direction from one line to the next. The user can control the
radius of the rounded corner by changing the parameter corner of the move
commands.

2. It reduces the speed of the curve.

Note

To make the corners traverse smoother, reduce the maximum velocity
(vel) of the motion and increase the corner parameter. A larger
corner radius or smaller vel both will make smoother corner traverses.

68

Absolute and relative motion
All move commands in Dorna can accept coordinates in both absolute and relative form. The
relevant parameter in motion commands is rel. When rel is set to 1, all coordinates presented
in the command (final point in line and final and midpoints in circle) are relative to the initial point
of the motion command. Whereas if the rel parameter is set to 0, all coordinates in the
command are interpreted as absolute values.

Auxiliary axes
In addition to the six axes of the robot, the controller can operate two additional axes, also
known as auxiliary axes. In this section, we will go over setting up and using the auxiliary axes
with the robot.

General notes
● The encoder used for an auxiliary axis should be an incremental quadrature encoder

with A and B channels (Index channel I is optional) and also be compatible with 3.3 V.
● The motor driver should have step & direction (PUL/DIR) control and be compatible with

3.3 V.
● You need a power supply (PSU) to run the motors. There is always the option of using

the controller's internal 48 VDC PSU. In this case, make sure that the motor driver input
voltage is within the range of the controller’s PSU, and that it also generates enough
wattage to run the motors.

● Run all the wiring before turning the controller on, to avoid any damage to the electronics
and the controller box.

● Use flex cable for motors and encoders.
● To protect the encoder signal against motor noise, we recommend:

○ Using shielded cable for encoder connection.
○ Connect the GND pin of the encoder to the body of the motor.

● Set the proper current setting on the driver based on your motor specification.

Setup

Scenarios
There are three main scenarios that the auxiliary axes can be useful in an automation project.

69

1. In the first scenario, we encounter a motor and a driver that utilize pulse and direction
signals to control the motor's rotation, operating without the assistance of an encoder.
Stepper motors serve as a prime example of this situation, as they can function
accurately without relying on encoder feedback. In other cases, the motor driver itself
may possess an internal processor capable of processing encoder data, eliminating the
necessity for the Dorna controller to have access to the encoder data during the
feedback loop processing. Numerous industrial AC or BLDC servo drivers fall into this
category, permitting users to effectively operate these motors by solely sending pulse
and direction signals to the driver.

2. The second scenario involves solely reading encoder data without the requirement of
motor control. For instance, if a user wishes to track the position of a conveyor belt
connected to a motor with a constant RPM, an encoder can be employed for this
purpose. The Dorna controller facilitates the reading of encoder values, enabling their
utilization for subsequent robot motion planning.

3. In the final setup, the user seeks to operate a stepper motor utilizing encoder feedback
data within a closed-loop control system. The Dorna controller lets you control and run
the motor and adjust the parameters of the motor and encoder and the controller PID
loop.

Definition
In the context of auxiliary axes, we have a motor (optional) that runs an axis (joint) through a
gearing mechanism. The controller uses an encoder (optional) data to report the value of that
axis as j6, or j7 (depending on the axis number).
In this configuration, we also need the following motor and encoder parameters in order to
properly report the value of an auxiliary axis or run the motor control loop:

● pprm (motor pulse per revolution): Also known as the motor driver micro-step setting,
refers to the number of electrical pulses generated by a motor driver for each complete
revolution of the motor shaft.

● tprm (motor travel per revolution): Refers to the amount the axis (joint) travels in one full
motor shaft revolution. The unit of the travel is irrelevant and can be set by the user. This
parameter can be positive or negative depending on the direction of movement of the
motor relative to the axis of rotation.

● ppre (encoder pulse per revolution): Represents the number of electrical pulses
generated by the encoder for each complete revolution of the encoder shaft (for
incremental quadrature encoders, it is commonly referred to as CPR of the encoder).

● tpre (encoder travel per revolution): This refers to the amount the axis (joint) travels in
one full encoder shaft revolution.This parameter can be positive or negative depending
on the direction of movement of the encoder shaft relative to the axis of rotation.

70

Note

If the encoder is directly mounted on the motor shaft, then the values of
tprm and tpre will be the same.

Example
We bring a few examples for better understanding:

1. A motor runs a rotary axis via a 1:10 gearbox. A 10-bit quadrature incremental encoder
is mounted directly on the axis, and the driver running the motor is set to a 4000
micro-step setting.
In this case, one full revolution of the axis is 360 degrees, so:

● pprm is equal to 4000 due to the driver setting.
● tprm is equal to 36 degrees, as one full rotation of the motor rotates the joint 36

degrees.
● ppre is equal to the encoder resolution (1024).
● tpre is equal to 360 degrees, as the encoder and axis shafts are identical.

2. Similar to the previous example but this time the encoder is mounted on the back of the
motor and is coupled with the motor shaft. In this case, everything will be similar to the
previous case, except tpre which will be equal to 36 degrees (similar to the tprm)

3. A 4000 micro-step motor runs a linear rail, where one full rotation of the motor shaft
results in 10 mm travel of the rail. The encoder also has 14 bits resolution (4096):

● pprm = 4000
● tprm = 10
● ppre = 4096
● tpre = 10

Configuration
Depending on the application, there are four distinct configurations available to configure the
auxiliary axis of the robot. These configurations can be customized according to your
requirements and desired functionality as described here.

1. Use motor and encoder (usem = 1, usee = 1): In this case, the robot runs the axis
closed-loop, using the given encoder and motor parameters, and returns the axis value
based on the encoder data (joint value = tpre x encoder value). A linear rail
with an encoder, or a rotary axis with an encoder are some examples of this

71

configuration. The closed-loop parameters are also specified by the PID values of that
axis.

2. Use the motor with no encoder (usem = 1, usee = 0): In this case, the robot runs
the axis open-loop. This configuration is useful when the encoder is not present, and it is
acceptable to run the axis in an open-loop fashion. The robot returns the axis value
based on the planned motor position data and not the encoder (joint value = tprm
x motor value)

3. Use the encoder and not the motor (usem = 0, usee = 1): In this case, the robot
reports the axis value based on the encoder data (joint value = tpre x encoder
value). This configuration is useful when you need to track a conveyor position or
similar applications.

4. No encoder and no motor (usem = 0, usee = 0): Both motor and encoder are
missing. In this case, the robot reports the value of the joint as 0.

Note

In a closed-loop application, it is important to set signs of tprm and
tpre parameters consistent with the direction of the encoder and motor
rotation. Otherwise, the feedback loop will not be able to converge to the
desired position.

72

Wiring

The connectors for the three auxiliary axes are available on the back panel of the controller box.
Here is the list of connectors available for the auxiliary axes:

● Quadrature encoder inputs: The pitch of the connector is 3.81 mm and use a 5-position
terminal block plug for the connection (sample).

Pin Description

B B channel

3.3 V Encoder VCC

A A channel

73

https://www.digikey.com/short/npjd224m

I Index channel

GND Encoder GND

● Motor driver with step/dir interface: The pitch of the connector is 3.81 mm and use a
6-position terminal block plug for the connection (sample).

Pin Description

P+ Driver PULSE signal.

P- Ground for the driver PULSE signal.

D+ Driver DIR signal.

D- Ground for the driver DIR signal.

E+ Driver ENABLE signal.

E- Ground for the driver's ENABLE signal.

● Power inputs: The pitch of the connector is 3.81 mm and use a 2-position terminal block
plug for the connection (sample).

Pin Description

48V Power supply positive connection for the driver (48 VDC coming from the
controller PSU)

GND Power supply ground connection for the driver.

Note

The encoder’s index signal can be probed using the iprobe command.
You can use the index signal for homing applications of the
corresponding auxiliary axis.

74

https://www.digikey.com/short/3b4nwtv2
https://www.digikey.com/short/0nz538mt

Unset

Unset

Operation
You can set up the parameters of the auxiliary axis using the axis command and operate the
auxiliary axis using normal move commands in Dorna lab or Python API, the same way you
program the robot's axes. For motion commands in joint space, the auxiliary axes are referred to
as j6, and j7. For motion commands in Cartesian space, the auxiliary axes are referred to as
d, and e, respectively.

Command server

Introduction
The robot runs aWebSocket server to send and receive data. After establishing a WebSocket
connection via the IP address of the robot, the user and controller will exchange real-time
information. We use the following terminology throughout this document.

● Command: Refers to a data message sent from the user (client) to the robot server.
● Message: Refers to the data message sent from the robot to the user.

Server address
Before a user can send commands and receive messages from the robot, they have to first
connect to the robot WebSocket server. The WebSocket server runs on port 443 of the robot:

ws://robot_ip_address:443

Where robot_ip_address is the robot IP address. For example, if the robot IP address is
10.0.0.14, then the WebSocket address is:

ws://10.0.0.14:443

75

https://en.wikipedia.org/wiki/WebSocket

Unset

Note

Dorna lab and Dorna Python API are two convenient ways to establish
the WebSocket interface with the robot server. However, you can use
any other programming language for establishing the WebSocket
connection to the robot and sending commands and receiving
messages.

Data format
Each command or message sent over the Websocket channel is a package of data in JSON
format. The general format of each package is as follows:

{"key1": value1, "key2": value2, ... , "keyn": valuen}

where string "keyi" is the name of the i-th parameter and valuei is its value.

Note

● The order in which key and value pairs are presented in each
package is not important.

● Keys are always a string in double quotation (“”).
● Values assigned to each key can be number, string, or binary.
● The keys and values (in string format) are case-sensitive. All

strings should be in lower letters.

Messages
Robot sends multiple types of messages to the users. Some are replies to a command that the
user sent, some are periodic messages, and some are event-based messages generated due
to an event occurring. Here, we will explain each of these messages in detail.

76

https://en.wikipedia.org/wiki/JSON

Unset

Unset

Motion
These messages are sent periodically to the user and report the position of the robot in
real-time at a rate of approximately 100 times a second. Each motion message reports the
following information about the current state of the robot:

● Current robot joint values
● Current robot TCP Cartesian coordinates
● Current robot velocity and acceleration in the space of the motion

Here is an example of such a message:

{"cmd":"motion", "j0":3.4, "j1":1.2, "j2":97.3, "j3":22, "j4":
32.76, "j5":0, "j6":0, "j7":0, "x":122.3, "y":674.3, "z":95.4,
"a":342, "b":32.6, "c":0, "d":0, "e":0, "vel":120.43, "accel":
804.11}

Note

Velocity and acceleration are reported in the space of the motion. For
instance, if the robot is moving with line move, the space is Cartesian
space (mm unit), whereas for joint move it is joint space (deg unit).

Inputs
Upon a change in any of the inputs, a message is sent that includes the input values for all the
robot input pins. Here is an example of such a message:

{"in0":0, "in1":0, "in2":1, "in3":1, "in4": 0, "in5":0, "in6":1,
"in7":0, "in8":1, "in9":0, "in10":1, "in11":0, "in12":1,
"in13":0, "in14":0, "in15":0}

77

Unset

Unset

Status
These messages report the status of each command that was sent to the robot, from the time
that the command is submitted, to the time that the execution of the command is completed.
These messages will only be sent to the user if the corresponding command has an "id" field
with a positive integer value. If the command does not have a positive integer value for its "id"
field, or it does not have an "id" field, the commands will be executed as normal, but no status
will be reported back to the user.
The returned message will have the same id value as the command itself. An example of such
a message is as follows:

{"id":12, "stat":2}

It means that the command with "id":12, is in status 2 (see here for more information).

Command response
Certain commands will return a response with information about the current state of the robot.
These messages are returned by the robot with the same id as the original command. They
also have a "cmd" field which is the same as the original command. We will explain the content
of these messages for each command individually.

Alarm
As soon as the robot goes into the alarm state, an alarm message is sent to the user, which
looks like the following message:

{"cmd":"alarm","alarm":1,"err0":-1046,"err1":-1,"err2":0,"err3":0
,"err4":0,"err5":0,"err6":0,"err7":0}

In this case the alarm message has an alarm key set to 1. The message has also err0 to
err7 fields which are the errors in the readings of the encoders 0 to 7 of the robot. By
inspecting the error values, you can identify the joints that have stopped moving and have
caused the alarm state. In the example above, motor 0 (the base motor of the robot), has
caused the alarm state.

78

Unset

Commands

Format
Each command which is sent to the controller has a required "cmd" key that specifies the name
of the command (see the full list of commands here). Each command can also have an optional
"id" key with a positive integer value assigned to it. The id is used to follow the status of the
command throughout its lifetime by the messages that are returned from the robot with the
same id value.

{"cmd": command_name, "id": unique_positive_integer_number, ...}

Order of commands
The robot has two different queues for processing commands; normal priority queue and high
priority queue.

Normal priority queue
This queue is designed for commands that need to run sequentially and the order matters in
their execution, such as motion commands.

High-priority queue
Sometimes, while executing commands in the normal priority queue, the user needs to issue
some higher priority commands that need to be executed immediately upon being received by
the controller. For instance, assume that the user needs to halt the robot immediately. In that
case, if the halt command sits in the same queue with other normal priority commands, it will be
executed after all other commands are finished, which is useless.
Another use case is reading input values. Sometimes, the user needs the value of an input pin,
after a certain command is finished. In that case, the read command should be placed after the
desired command in the normal priority queue. There are other instances, where the user needs
to read the input value immediately without waiting for the completion of other commands in the
normal priority queue. In that case, the user has to submit a read input command to the
higher-priority queue.
Some commands are only assigned to a specific queue by the controller. For other commands,
the user has the option to submit them to the normal priority queue or high priority queue. For
such commands, the "queue" field (key) specifies the queue of the command (normal or high
priority). When sending a command to the robot, if

79

Unset

Unset

● "queue" is set to 1: The command will be submitted to the high-priority queue and will
be executed instantly.

● "queue" is set to 0: The command will be submitted to the normal priority queue and
will be processed only after all other commands in that queue are processed.

Status of a command and its life cycle
When sending a valid command to the robot, the controller reports the status of the command
from the time that the command is submitted to the time that the execution of that command is
completed using a stat key and the unique id sent initially with the command. An example of
these messages are as follows:
Send command to read the alarm status of the system, with id=12:

{"cmd":"alarm","id":12}

Receive the following messages one by one from the controller:

{"id":12,"stat":0}
{"id":12,"stat":1}
{"cmd":"alarm","id":12,"alarm":0}
{"id":12,"stat":2}

● id key: As you can see in the above example, we sent a command to the robot to get its
alarm status. The robot replies back by sending multiple messages. Our initial command
had an id field equal to 12. So, all the replies from the robot associated with this
command have the same id value.

● stat key: Another important field in the received messages (robot replies) is the stat
key. The stat field can take different values with the following interpretations:

○ stat = 0: The command has been received by the controller and has no error.
○ stat = 1: The command execution has just begun. Note that after commands

are received and processed by the robot, they will be submitted to a queue.
Depending on the queue type and the position of the command in the queue, the
actual execution of the command will be at a later time.

80

Unset

○ stat = 2: The execution of the command is now completed with no error.
Some commands run almost instantly. For those commands there is no delay
between receiving "stat":1 and "stat":2 of the command. For example,
reading an input value will be executed instantly. However, for some other
commands, such as move commands or pause commands, the time that the
command starts and the time that the command is completed are different. Users
can use the "stat":2 indicator, to sync different events with the completion of
certain commands.

○ stat < 0: An error happened during the execution of the command and the
command will not be executed.

Note

● We say that a command is completed if the robot sends stat =
2 or stat < 0 of that command. That basically means the
command is completed, no longer running and its life cycle is
over.

● If the command sent by the user does not have an "id" field
with a positive integer value, the command will still be executed,
but no status from that command will be returned by the robot to
the user.

List of commands

jmove

{"cmd": "jmove", ...}

Moves the robot joints via a joint move.

81

Note

In jmove the robot joints travel the shortest possible distance to the
destination point and therefore the best option for fast moves.

Parameters

Key Value Required

“cmd” “jmove” Yes

Moves the robot joints simultaneously to the target point.

“id” Int (>0) No

ID can be any positive integer. If the ID is not provided, the status of the command will not be
returned from the controller.

Any combination of one of the following sets of keys:
● “j0”,“j1”,“j2”,“j3”,“j4”,“j5”,“j6”,“j7”
● “x”,“y”,“y”,“z”,“a”,“b”,“c”,”d”,”e”

Double Yes

The position of the target point. Either you have to use a joint space representation of the
target point or the TCP pose representation. In joint representation, at least one of the joint
values j0, …, j7 should be present in the command. The joints that are missing will remain
the same after the motion is completed. If no joint is present in the command, then the target
point should be presented using TCP pose in Cartesian coordinates x, y, z, a, b, c,
d, e. In this case, the value of any missing coordinate will not change after the command is
completed.

“rel” 0 / 1 No

This value specifies if the move command is relative or absolute. If it is set to 0, the motion
will be absolute. Otherwise, the move command will be relative. If this field is not present, the
last given value for the same command (jmove) will be used.

“vel” Double (>0) No

The maximum velocity of the motion in the joint space (). If this field is not present, the𝑑𝑒𝑔/𝑠

82

last given value for the same command (jmove) will be used.

“accel” Double (>0) No

The maximum acceleration of the motion in the joint space (). If this field is not present,𝑑𝑒𝑔/𝑠2

the last given value for the same command (jmove) will be used.

“jerk” Double (>0) No

The maximum jerk of the motion in the joints space (). If this field is not present, the𝑑𝑒𝑔/𝑠3

last given value for the same command (jmove) will be used.

“cont” 0 / 1 No

This parameter is for continuous motion. 1 for continuous motion and 0 for discrete motion. If
this field is not present, the last given value for the same command (jmove) will be used.

“corner” Double (>0) No

Set the corner parameter of the continuous motion. If this field is not present, the last given
value for the same command (jmove) will be used.

Error codes

Stat Value

-1 General error

-100 Final position is out of range

-102 Midpoint is out of range for circle

-103 Midpoint is not provided for circle

-104 Velocity coefficient is out of range

-105 Acceleration coefficient is out of range

-106 Jerk coefficient is out of range

-107 Velocity should be positive

-108 Acceleration should be positive

83

Unset

Unset

-109 Jerk should be positive

-110 Point out of range on the path

-111 Circle cannot be realized

-300 Halt already in process

-400 Alarm activated

Example 1: This command will move j0, 10 degrees and j3, 20 degrees relative to their current
position. Other joints will not change. The maximum velocity will be 234 deg/s and
acceleration and jerk will be at the last given values. Note that if "rel" is set to 0, then the
robot will move to the coordinates, j0 = 10 and j3 = 20.

{"cmd":"jmove", "id":12, "j0":10, "j3":20, "rel":1, "vel":234}

lmove

{"cmd": "lmove", ...}

Moves the robot TCP on a line using a line move.

Parameters

Key Value Required

“cmd” “lmove” Yes

Moves the robot TCP to a new position on a line.

“id” Int (>0) No

Similar to the jmove command

84

Any combination of one of the following sets of keys:
● “j0”,“j1”,“j2”,“j3”,“j4”,“j5”,“j6”,“j7”
● “x”,“y”,“y”,“z”,“a”, “b”,“c”,”d”,”e”

Double Yes

Similar to the jmove command

“rel” 0 / 1 No

Similar to the jmove command

“vel” Double (>0) No

The maximum velocity of the motion in the Cartesian space (). If this field is not present,𝑚𝑚/𝑠
the last given value for the same command (lmove) will be used.

“accel” Double (>0) No

The maximum acceleration of the motion in the Cartesian space (). If this field is not𝑚𝑚/𝑠2

present, the last given value for the same command (lmove) will be used.

“jerk” Double (>0) No

The maximum jerk of the motion in the Cartesian space (). If this field is not present,𝑚𝑚/𝑠3

the last given value for the same command (lmove) will be used.

“cont” 0 / 1 No

Similar to the jmove command

“corner” Double (>0) No

Similar to the jmove command

Error codes

Similar to the jmove command

Example 1: Moves the TCP on a line from its current position to 5 mm in the x and 12 mm in the
y direction with a maximum speed of 100 mm/s.

85

Unset

Unset

Unset

{"cmd":"lmove", "id":12, "x":5, "y":12, "rel":1, "vel":100}

Example 2: Similar to the previous example, but the final position is given in joint coordinates.

{"cmd":"lmove", "id":12, "j0":10, "j1":20, "rel":1, "vel":100}

cmove

{"cmd": "cmove", ...}

Moves the robot TCP on a circle using a circle move. Positions of the target point and midpoint
of a circle can be given in joint space or in Cartesian space. Also, the coordinates can be either
relative or absolute as defined by parameter rel. In relative mode, all positions are relative to
the starting point of the circle.

Parameters

Key Value Required

“cmd” “cmove” Yes

Moves the robot TCP on a circle.

“id” Int (>0) No

Similar to the jmove command

Any combination of one of the following sets of keys:
● “j0”,“j1”,“j2”,“j3”,“j4”,“j5”,“j6”,“j7”
● “x”,“y”,“y”,“z”,“a”, “b”,“c”,”d”,”e”

Double Yes

The target point of the circle is expressed either in joint or Cartesian coordinates.

86

Any combination of one of the following sets of keys:
● “mj0”,“mj1”,“mj2”,“mj3”,“mj4”,“mj5”,“mj6”,“mj7”
● “mx”,“my”,“my”,“mz”,“ma”,“mb”,“mc”,”md”,”me”

Double Yes

The coordinates of a midpoint on the circle. The circle will connect the current position to the
target position by passing through the midpoint. The midpoint can be either presented in
joints space by "mj0","mj1","mj2","mj3","mj4","mj5","mj6","mj7" or in
Cartesian space by "mx","my","mz","ma","mb","mc","md","me". If a coordinate is
not present in the description of the midpoint, it will be set to the initial point of the circle.

“turn” Int (>=0) No

Number of turns of the circle. If not present, the default value of 0 is used. For any number of
turns larger than 0, the robot will make the additional complete turns before stopping at the
target point.

“rel” 0 / 1 No

If rel is set to 0, both midpoint and target point are interpreted as absolute coordinates. If
rel is set to 1, both midpoint and target point values are treated relative to the initial point of
the circle. If this field is not present, the last given value of the same command (cmove) will
be used.

“vel” Double (>0) No

The maximum velocity of the motion in the Cartesian space (). If this field is not present,𝑚𝑚/𝑠
the last given value for the same command (cmove) will be used.

“accel” Double (>0) No

The maximum acceleration of the motion in the Cartesian space (). If this field is not𝑚𝑚/𝑠2

present, the last given value for the same command (cmove) will be used.

“jerk” Double (>0) No

The maximum jerk of the motion in the Cartesian space (). If this field is not present,𝑚𝑚/𝑠3

the last given value for the same command (cmove) will be used.

Error codes

87

Unset

Unset

Similar to the jmove command

Example 1: This command will move the TCP, on a circle that starts from the current position
and passes through mx = 10, my = 8, and mz = 130, and stops at x = 10, y = 10.
Final z, a, b, c, d, e values will be the same as the initial point. The robot will make two
extra full turns since turn = 2.

{"cmd":"cmove", "rel":0, "id":12, "x":10, "y":10, "mx":6, "my":8,
"mz":130, "turn":2}

halt

{"cmd":"halt", ...}

This command will force the robot to stop the motion immediately by decelerating from the
current speed to zero. All remaining commands in the queue of the robot will also be deleted.
Until the halt motion is completed, no new command except the alarm command, will be
accepted by the robot.
The halt process by default uses the same deceleration as the original move command
acceleration that is being stopped by the halt command. However, using parameter accel
(default is 1), the user can increase the deceleration rate. If the accel parameter is present, the
controller will stop the motion by deceleration rate which is the accel parameter of the halt
command multiplied by the acceleration parameter of the original command. This will help the
robot to decelerate faster during emergency halt commands.

Parameters

Key Value Required

“cmd” “halt” Yes

Halts the robot by decelerating to zero speed.

88

Unset

Unset

“id” Int (>0) No

Similar to the jmove command

“accel” Double (>=1) No

If present, the robot will decelerate to zero speed by deceleration rate which is the accel
value times the original motion command accel value. Otherwise, the robot will decelerate
with the deceleration value equal to the original move command accel value. Note that this
parameter cannot be less than 1.

Error codes

Stat Value

-1 General error

-2 accel value provided is not valid

-300 Halt already in process

-400 Alarm activated

Example 1: Immediately after receiving this command, the robot will decelerate at the rate of
7.5 x accel to a full stop, where accel is the parameter value from the original move
command which the halt command is acting on.

{"cmd":"halt", "id":12, "accel":7.5}

alarm

{"cmd":"alarm", ...}

89

If an external force (or an obstacle) prevents the robot from maintaining its planned orientation,
then the robot goes into the alarm state. In the alarm state, all commands that are already
submitted to the robot will be ignored and removed, and the existing motion command will be
immediately suspended and the robot will abruptly stop its motion without proper deceleration.
No new commands will be accepted by the controller until an alarm-clearing command (alarm
= 0) is issued to the robot by the user. The user has to clear any obstacle to the motion of the
robot before clearing the alarm. After the alarm is cleared, the robot will accept and run new
commands as usual.
In addition to accidents that will force the robot into alarm mode, the user can also manually
send an alarm command to the robot, which will result in exactly the same behavior from the
robot. For instance, if the user can detect an obstacle that will hit the robot shortly, and the time
or distance to the obstacle is not large enough for a halt command to operate properly, the
user can send an alarm command.

Parameters

Key Value Required

“cmd” “alarm” Yes

Forces the robot into an alarm state or clears an already existing alarm state.

“id” Int (>0) No

Similar to the jmove command

“alarm” 0 / 1 No

If the alarm has value 1, the robot will be forced into alarm mode. If the value is 0, the
existing alarm will be cleared. If it is not presented, then the current value of the alarm will be
returned in response.

Response

Key Value

“cmd” “alarm”

The cmd key in the response is set to ”alarm”.

“alarm” 0 / 1

90

Unset

Unset

Unset

The value of the alarm indicates the current alarm state in the controller.

“id” Int (>0)

Same id as the original command.

Error codes

Stat Value

None

Example 1: This command will clear the alarm state of the robot. It has to be issued after the
robot enters the alarm state.

{"cmd":"alarm","alarm":0, "id":12}

Example 2: This command will return the current state of the alarm signal.

{"cmd":"alarm","id":10}

pid

{"cmd":"pid", ...}

This command is used to set and get the closed-loop PID parameters of the robot (P, I and D),
and also the threshold and duration parameters of the safety function.

91

Unset

● PID values: Each robot joint (j0, …, j7) uses three sets of parameters pi, ii, and di
(for i from 0 to 7) for the position PID loop of the associated joint. Use the PID
command to set and get these parameters.

● threshold and duration parameters: An error erri (for i from 0 to 7) is a function
of the robot's actual join value ji and the value that is supposed to be based on the
planned motion trajectory. Higher error (in absolute form |ei|) means that the
associated joint is facing more external force, and therefore the PID loop cannot
converge to the correct position. An alarm happens when for a period of durationi,
the absolute value of at least one of the erri is greater than or equal to the
thresholdi.

Note

● The durationi parameter is not measured in seconds.
● The thresholdi parameter is not measured in degrees.
● Modify the PID parameter with caution. The wrong PID

parameters will greatly impact the quality of the motion and will
cause unstable and jerky movements by the robot.

● To operate the robot in an open loop with no active safety alarms,
set all p, i, and d for all the joints to 0 and duration and the
threshold to 10000000.

● The PID parameters will all be reset to their default values upon
resetting the controller.

The default values of PID parameters are set based on extensive tests and work for a wide
range of load and speed profiles. We do not recommend changing the default values for the
joints 0 to 4 (five axes of the robot). For auxiliary axes, the default values should serve as a
good starting point. However, the user might need to change the default values for certain motor
or load or speed requirements.The default values for the PID parameters are

Dorna TA
p0 = 0, i0 = 0.0003, d0 = 0.02, threshold0 = 200, duration0 = 10000
p1 = 0, i1 = 0.0003, d1 = 0.02, threshold1 = 200, duration1 = 10000
p2 = 0, i2 = 0.0003, d2 = 0.02, threshold2 = 200, duration2 = 10000

92

p3 = 0, i3 = 0.0003, d3 = 0.02, threshold3 = 200, duration3 = 10000
p4 = 0, i4 = 0.0003, d4 = 0.02, threshold4 = 200, duration4 = 10000
p5 = 0, i5 = 0.001, d5 = 0.01, threshold5 = 200, duration5 = 10000
p6 = 0, i6 = 0.001, d6 = 0.01, threshold6 = 200, duration6 = 10000
p7 = 0, i7 = 0.001, d7 = 0.01, threshold7 = 200, duration7 = 10000

Parameters

Key Value Required

“cmd” “pid” Yes

Set or get the robot PID parameters.

“id” Int (>0) No

Similar to the jmove command

Any combination of one of the following sets of keys:
● “p0”,“p1”,“p2”,“p3”,“p4”,“p5”,“p6”,“p7”
● “i0”,“i1”,“i2”,“i3”,“i4”,“i5”,“i6”,“i7”
● “d0”,“d1”,“d2”,“d3”,“d4”,“d5”,“d6”,“d7”
● ”Threshold0”, …, “Threshold7”
● ”duration0”, …, “duration7”

Double(>=0) No

Use these keys to adjust the PID, threshold and duration parameters. No more than 16 PID
parameters can be specified in a single command.

“pid” 0 / 1 No

Enable or disable the pid functionality (1 enable and 0 disable).

Response

Key Value

“cmd” “pid”

93

Unset

The cmd key in the response is set to ”pid”.

● “p0”,“p1”,“p2”,“p3”,“p4”,“p5”,“p6”,“p7”
● “i0”,“i1”,“i2”,“i3”,“i4”,“i5”,“i6”,“i7”
● “d0”,“d1”,“d2”,“d3”,“d4”,“d5”,“d6”,“d7”
● ”Threshold0”, …, “Threshold7”
● ”duration0”, …, “duration7”

Double(>=0)

In response the robot sends back the PID, threshold and duration parameters. The response
will be sent in two separate messages where the first message returns the first 16 parameters
and the second message will return the remaining 10 parameters.

“pid” 0 / 1

Indicate whether the pid functionality is enabled (1) or disabled (0)

“id” Int (>0)

Same id as the original command.

Error codes

Stat Value

None

sleep

{"cmd":"sleep", ...}

The robot sleeps for the number of seconds specified in this command. It can be used to create
a delay between the execution of motion commands or other commands in the normal priority
queue as it executes in the normal priority queue in the same order that it was received by the
controller.

Parameters

94

Unset

Unset

Key Value Required

“cmd” “sleep” Yes

Sleep between commands.

“id” Int (>0) No

Similar to the jmove command

“time” Double (>=0) No

The amount of sleep time in seconds (s).

Error codes

Stat Value

-21 time field is missing or invalid

-300 Halt already in process

-400 Alarm activated

Example 1: After finishing all the commands before this command, the controller waits for 5
seconds, before executing the next command.

{"cmd":"sleep", "time":5}

input

{"cmd":"input", ...}

Get the input values. The command by default will report the input values immediately. However,
by setting the queue value to 0, the user can send the command to the normal priority queue,
where the input values will be reported after all other commands before they are concluded.

95

Parameters

Key Value Required

“cmd” “input” Yes

Get input values.

“id” Int (>0) No

Similar to the jmove command

“queue” 0 / 1 No

If the value is 0, the command will be submitted to the normal priority queue. Otherwise, it will
be submitted to the high-priority queue. The default value is 1.

Response

Key Value

“cmd” “input”

The response of an input command will be a message with the cmd field set to input.

“id” Int (>0)

Same id as the original command.

"in0", …, "in15 0 / 1

The value of each input.

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

96

Unset

Unset

Unset

Example 1: This example will read the input values,

{"cmd":"input", "id":12}

and will respond with a message as follows which specifies the current value of each input pin.

{"cmd":"input", "id":12, "in0":0 , "in1":0 , "in2":1 , "in3":1 ,
"in4": 0 , "in5":0 , "in6":1 , "in7":0 , "in8":1 , "in9":0 ,
"in10":1 , "in11":0 , "in12":1 , "in13":0 , "in14":0 , "in15":0}

probe

{"cmd":"probe", ...}

Match the input values with the pattern that the user specifies. Whenever such a pattern
appears at the input pins, the robot will send a response which is the joint values of the robot at
the time that the match happens. This command could be useful for homing an actuator with a
sensor connected to an input pin. Note that the controller will only send the response after the
first match happens and consequent matches won't be responded to. This command by default
will be submitted to the high-priority queue. By setting the queue value to 0, the command will
be submitted to the normal priority queue.

Parameters

Key Value Required

“cmd” “probe” Yes

Match input values with a given pattern.

“id” Int (>0) No

97

Similar to the jmove command from the controller.

"in0", …, "in15” 0 / 1 No

Probe command will wait until the value of each input that has a key in the command matches
its value. If an input key is not present in the command, its value won't impact the match.

“queue” 0 / 1 No

If the value is 0, the command will be submitted to the norma-priority queue. Otherwise, it will
be submitted to the high-priority queue. The default value is 1.

Response

Key Value

“cmd” “probe”

Response of a probe command will be a message with the cmd field set to probe which will
include the joint values at the moment of input match.

“id” Int (>0)

Same id as the original command.

"j0", "j1", …, "j7" Double

The robot joint values

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

Example 1: This command will wait until the input 4 (in4) value is 0 and input 7 (in7) value is 1

98

Unset

Unset

Unset

{"cmd":"probe", "id":12, "in4":0, "in7":1}

Then it will send a message that includes the joint values of the robot at that moment. While the
robot is waiting for the match to happen all other commands including move commands will be
executed as normal.

{"cmd":"probe", "id":12, "j0":12.3, "j1":2.11, "j2":85,
"j3":653.4, "j4":56.34, "j5":67.32, "j6":23.74, "j7":90.00}

iprobe

{"cmd":"iprobe", ...}

This command is similar to the probe command but here we are waiting for a specific pattern in
the encoder indices (only applies to quadrature encoders with index channel), instead of an
input pin. Whenever such a pattern appears at the encoder indices, the robot will send a
response which is the joint values of the robot at the time that the match happens. This
command could be useful for homing of an auxiliary axis with quadrature encoders and index
channel. Note that the controller will only send the response after the first match happens and
consequent matches won't be responded to. This command by default will be submitted to the
high-priority queue. By setting the queue value to 0, the command will be submitted to the
normal priority queue.

Note

● The index channel is an additional channel available in some
quadrature encoders. It generates a single pulse per revolution,
providing a reference point or marker for a complete rotation.
This pulse is typically used to reset or synchronize position
counts.

99

● In some encoders, the index generates the pulse 8 times per
revolution (quadrature encoders that come with the Dorna rail
kit).

● Make sure to read the encoder datasheet, in order to understand
the index channel behavior.

● You can use the index channel for setting the joints automatically
auto homing of the auxiliary axis.

Parameters

Key Value Required

“cmd” “iprobe” Yes

Match input values with a given pattern.

“id” Int (>0) No

Similar to the jmove command from the controller.

"in5", "in6", "in7" 0 / 1 No

The iprobe command will wait until the value of the encoder index pins in the command
appears. If an encoder index key is not present in the command, its value won't impact the
match.

“queue” 0 / 1 No

If the value is 0, the command will be submitted to the normal priority queue. Otherwise, it will
be submitted to the high-priority queue. The default value is 1.

Response

Key Value

“cmd” “iprobe”

Response of an iprobe command will be a message with the cmd field set to iprobe which
will include the joint values at the moment of input match.

100

Unset

Unset

Unset

“id” Int (>0)

Same id as the original command.

"j0", "j1", …, "j7" Double

The robot joint values

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

Example 1: This command will wait until the encoder index channel of the auxiliary axis5 is 1

{"cmd":"iprobe", "id":12, "in5":1}

Then it will send a message that includes the joint values of the robot at that moment.

{"cmd":"iprobe", "id":12, "j0":12.3, "j1":2.11, "j2":85,
"j3":653.4, "j4":56.34, "j5":67.32, "j6":23.74, "j7":90.00}

output

{"cmd":"output", ...}

Set or get the values of the output pins. After the robot receives the command, it will set the
output values and in response will return the value of all output pins. The default queue for this

101

command is the high-priority queue. If the queue parameter is set to 0, then the command will
be submitted to the normal priority queue.

Parameters

Key Value Required

“cmd” “output” Yes

Set or get the output values.

“id” Int (>0) No

Similar to the jmove command from the controller

"out0", "out1", "out2", …, "out15" 0 / 1 No

If any outi is present as a key, the value of the corresponding output will be set to the given
value.

“queue” 0 / 1 (default 1) No

If the value is 0, the command will be submitted to the normal priority queue. Otherwise, it will
be submitted to the high-priority queue. The default value is 1.

Response

Key Value

“cmd” “output”

In response to the output command a message is returned with the cmd field set to output
which includes the value of all output pins.

“id” Int (>0)

Same id as the original command.

"out0", "out1", …, "out15" 0 / 1

The value of each output pin.

102

Unset

Unset

Unset

Error codes

Stat Value

-300 Halt already in process

-300 Alarm activated

Example 1: This command will set out0 to 1 and out2 to 0,

{"cmd":"output", "out0":1, "out2":0, "id":12}

and will return all output values.

{"cmd":"output", "id":12, "out0":1 , "out1":0 , "out2":0 ,
"out3":1 , "out4": 0 , "out5":0 , "out6":1 , "out7":0 , "out8":1
, "out9":0 , "out10":1 , "out11":0 , "out12":1 , "out13":0 ,
"out14":0 , "out15":0}

pwm

{"cmd":"pwm", ...}

This command will enable and disable PWM pins and will set their duty cycle and frequency to
the desired values. The default queue for this command is the high-priority queue. If the queue
parameter is set to 0, then the command will be submitted to the normal priority queue. In
response to this command, the state of all PWM pins will be returned.

Parameters

Key Value Required

103

“cmd” “pwm” Yes

Enable or disable PWM pins, set their duty cycle and frequency values.

“id” Int (>0) No

Similar to the jmove command from the controller.

"pwm0", "pwm1", "pwm2", "pwm3", "pwm4" 0 / 1 No

If pwmi is set to 0, it will disable ith PWM pin. If pwmi is set to 1, it will enable ith PWM pin. If
pwmi is not present as a key, then the state of ith PWM pin will not change by the command.

"duty0", "duty1", "duty2", "duty3", "duty4" Double (>=0 and
<=100)

No

If dutyi is present as a key, the duty cycle of the ith PWM will be set to its value which is the
percentage of the period that the PWM pin will be on.

"freq0", "freq1", "freq", "freq3", "freq4" Double (>=0 and
<=120,000,000)

No

If freqi is present as a key, frequency of the ith PWM pin will be set to its value.

"queue" 0 / 1 No

If the value is 0, the command will be submitted to the normal priority queue. Otherwise, it will
be submitted to the high-priority queue. The default value is 1.

Response

Key Value

“cmd” “pwm”

In response to the pwm command, a message is returned with a cmd field set to pwm where
the state, duty cycle, and frequency of all PWM pins are included in it.

“id” Int (>0)

Same id as the original command.

104

Unset

Unset

"pwm0", "pwm1", "pwm2", "pwm3", "pwm4" 0 / 1

Indicates if each PWM pin is enabled or disabled. 1 means the PWM pin is enabled and 0
means it is disabled.

"duty0", "duty1", "duty2", "duty3", "duty4" Double (>=0 and <=100)

Indicates the duty cycle of each PWM pin.

"freq0", "freq1", "freq", "freq3", "freq4" Double (>=0 and
<=120,000,000)

Indicates the frequency of each PWM pin.

Error codes

Stat Value

-300 Halt already in process

-300 Alarm activated

-601 Duty cycle parameter is out of range

-602 Freq parameter is out of range

Example 1: This command will enable pwm0 and set its frequency to 125 Hz. It will also disable
pwm2.

{"cmd":"pwm", "id":12, "pwm0":1, "pwm2":0, "freq0":125}

The response will have information about all PWM pins.

{"cmd":"pwm", "id":12, "pwm0":1, "pwm1":0, "pwm2":0, "pwm3":1,
"pwm4":0, "duty0":5, "duty1":2, "duty3":32, "duty4":9,
"freq0":125, "freq1":320, "freq2":450, "freq3":1200, "freq4":100}

105

Unset

adc

{"cmd":"adc", ...}

This command will read the value of all ADC pins and map the input voltage (in the range of 0V

to 3.3V) to an integer between 0 to . The default queue for this command is the high216 − 1
priority queue. If the queue parameter is set to 0, then the command will be submitted to the
normal priority queue.

Parameters

Key Value Required

“cmd” “adc” Yes

Reads ADC pins.

“id” Int (>0) No

Similar to the jmove command from the controller.

"queue" 0 / 1 No

If the value is 0, the command will be submitted to the normal priority queue. Otherwise, it will
be submitted to the high-priority queue. The default value is 1.

Response

Key Value

“cmd” “adc”

In response to adc command a message is returned where the cmd field is set to adc and
the values of all ADC pins are included in it.

“id” Int (>0)

Same id as the original command.

106

Unset

Unset

Unset

"adc0", "adc1", "adc2", "adc3", "adc4" Int (>=0 and <=)216 − 1

Value of ADC pins as an integer between 0 and .216 − 1

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

Example 1: Send an adc command to the robot

{"cmd":"adc", "id":12}

The response will include the value of all ADC pins.

{"cmd":"adc", "id":12, "adc0":0, "adc1":33, "adc2":10, "adc3":0,
"adc4":0}

joint

{"cmd":"joint", ...}

This command will set the joint values to the values given in the command. This command is
always submitted to the high-priority queue and upon being received by the controller, all other
commands in the controller queue will be deleted. This command is particularly useful for the
homing process. The return value from the controller will be the value of all the joint values of
the robot after the new values are applied. This command can be used to read the current value
of joints if it is used with no joint input.

107

Note

● Dorna TA uses absolute encoders on its joints that keep track of
the joint positions even after the power shut off. Therefore no
homing is required for the first 6 axes of the robot upon starting
the robot.

● In Dorna TA, this command will only take the value of one joint at
a time.

Parameters

Key Value Required

“cmd” “joint” Yes

Sets the joint values to the values provided in the command.

“id” Int (>0) No

Similar to the jmove command.

"j0", "j1", "j2", "j3", "j4, "j5", "j6", "j7" Double No

The value of each joint. If a joint is not present, its value will not change by the command. In
Dorna TA, only one joint can be set in a joint command.

Response

Key Value

“cmd” “joint”

The response of a joint command will be a message with a cmd field set to the joint.

“id” Int (>0)

Same id as the original command.

108

Unset

Unset

Unset

"j0", "j1", "j2", "j3", "j4, "j5", "j6", "j7" Double

The value of all joints will be returned.

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

Example 1: This command will set the j3 value to the given value

{"cmd":"joint","id":12, "j3":37.5}

and return all joint values:

{"cmd":"joint","id":12, "j0":0, "j1":30.22, "j2":29, "j3":37.5,
"j4":90.0, "j5":0, "j6":0, "j7":0}

axis

{"cmd":"axis", ...}

Use this command to set or get auxiliary axes parameters.
This command applies parameters to the auxiliary axes 6, and 7. It also saves the parameters
of these three axes whether they are active or not.
The command only takes parameters for one joint at a time, and the joint is determined from the
first available parameter (all other parameters for other joints will be ignored).
The response will include the value of all parameters for all joints.

109

Parameters

Key Value Required

“cmd” “axis” Yes

Sets or gets the auxiliary axes parameters.

“id” Int (>0) No

Similar to the jmove command.

Use one of the following sets of keys
● "usem6", "usee6"
● "usem7", "usee7"

0 / 1 No

usemi and usemi indicate whether we use motor or encoder for the axis i or not,
respectively. Depending on the value of usem and usee we can fall into one of the following
four categories explained in the auxiliary axes configuration section:

● usemi=1, usemi=1: Both motor and encoder are present for the auxiliary axis.
● usemi=1, usemi=0: Only encoder is present.
● usemi=0, usemi=1: Only motor is present.
● usemi=0, usemi=0: No motor or encoder is present.

Use one of the following sets of keys based on the index picked
for usem and usee:

● "pprm6", "tprm6", “ppre6”, “tpre6”
● "pprm7", "tprm7", “ppre7”, “tpre7”

Double (≠0) No

Set the motor and encoder parameters "pprm", "tprm", “ppre”, “tpre” of an
auxiliary axis.

Response

Key Value

“cmd” “axis”

The response of an axis command will be a message with the cmd field set to the axis.

“id” Int (>0)

110

Unset

Unset

Same id as the original command.

usem6, usem7
usee6, usee7
pprm6, pprm7
tprm6, tprm7
ppre6, ppre7
tpre6, tpre7

Double

Response will include the value of all parameters for all the auxiliary axes (6 and 7). The
response will be chopped in two messages where the first message will include the
parameters of axes 6 and the second message will include the parameters of axis 7.

Error codes

Stat Value

-902 Error code for pprm being 0

-903 Error code for tprm being 0

-904 Error code for ppre being 0

Example 1: A stepper motor with 4000 micro step setting and 1:10 reduction is running a rotary
axis. The axis is labeled as j7 and a 10-bit (1024) encoder is also mounted on it to measure its
value:

{"cmd": "axis", "id":12, "usem7":1, "usee7":1, "pprm7":4000,
"tprm7":36, "ppre7": 1024, "tpre7":360}

motor

{"cmd":"motor", ...}

111

This command is used to turn the motors on or off. The user can turn motors off to either save
power while the robot is not operational or place the robot in a predetermined location as a
homing process or hand train the robot by moving it to different locations manually and saving
the positions of those points. This command is submitted to the high-priority queue. In response
to this command the current state of the motors after the command was applied is returned.

Note

Please note that when the motors are off, the robot still tracks the
positions of the motors, and as soon as the motors are on again, the
motors can continue receiving motion commands as usual.

Parameters

Key Value Required

“cmd” “motor” Yes

Turn motors on or off. The response will be the current state of the motors.

“id” Int (>0) No

Similar to the jmove command.

"motor" 0 / 1 No

0 will turn all motors off and 1 will turn them on. If this parameter is not present, the motor's
state will not change.

Response

Key Value

“cmd” “motor”

In response to the motor command a message is returned with a cmd field set to the motor
which includes the current state of the motors.

112

Unset

Unset

Unset

“id” Int (>0)

Same id as the original command.

"motor" 0 / 1

0 means the motors are off and 1 means the motors are on.

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

Example 1: This command will turn all motors off.

{"cmd":"motor","id":12, "motor":0}

The response will include the current state of the motors after the command was applied:

{"cmd":"motor","id":12, "motor":0}

tool

{"cmd":"tool", ...}

With this command you can set or get the tool matrix. For accurate readings of the TCP, the tool
matrix should be set to the correct value for use in forward and inverse kinematics calculations
inside the robot. The response returned from the robot is the tool head length. This command

113

always runs in the high-priority queue and upon being received by the controller, all other
commands in the controller will be deleted.

Parameters

Key Value Required

“cmd” “tool” Yes

Ser or get the tool head length.

“id” Int (>0) No

Similar to the jmove command.

“r00”, “r01”, “r02”,
“r10”, “r11”, “r12”,
“r20”, “r21”, “r22”,
“lx”, “ly”, “lz”

Double No

Parameters of the tool matrix as defined here tool matrix. If no parameter is present, the
current value of the tool matrix will be returned and other commands in the controller won't be
removed.

Response

Key Value

“cmd” “tool”

In response to the tool command, a response is returned with the cmd field set to tool
which includes the current elements of the tool matrix.

“id” Int (>0)

Same id as the original command.

“r00”, “r01”, “r02”,
“r10”, “r11”, “r12”,
“r20”, “r21”, “r22”,
“lx”, “ly”, “lz”

Double

114

https://docs.google.com/document/d/1NLkL3RUIqIuooMMrhouAwHsKRSFnnyPOxoGMbBYNpAE/edit?pli=1#heading=h.klscb4ufi9c8

Unset

Unset

Unset

The elements of the tool matrix.

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

-701 The rotation matrix of the tool
matrix is not a valid rotation matrix.

Example 1: This command will set the offset of the tool in z direction to 22mm and in x direction
to 10mm.

{"cmd":"tool","id":12, "lz":22 , "lx":10}

It will return a response as follow:

{"cmd":"tool","id":12,"r00":1,"r01":0,"r02":0,"r10":0,"r11":1,"r1
2":0,"r20":0,"r21":0,"r22":1,"lx":10,"ly":0,"lz":22}

version

{"cmd":"version", ...}

This command returns the version of the firmware.

Parameters

115

Unset

Key Value Required

“cmd” “version” Yes

Returns the version of the firmware.

“id” Int (>0) No

Similar to the jmove command.

Response

Key Value

“cmd” “version”

In response to the version command response is returned with cmd field set to version
which includes the current version of the firmware.

“id” Int (>0)

Same id as the original command.

"version" Int (>0)

The current version of the firmware.

Error codes

Stat Value

-300 Halt already in process

-400 Alarm activated

Example 1: Get the firmware version

{"cmd":"version", "id":12}

116

Unset

In reply you will get:

{"cmd":"version", "version" : 109, "id":12}

Dorna Lab
Dorna web interface, also known as Dorna Lab, is more or less the equivalent of the teach
pendant’s interface of a traditional industrial robot. The interface is essentially a web application
that you can use to monitor, control, and program the robot. All of the files and packages reside
in the robot’s controller, so you do not need to install anything on your computer, but Google
Chrome.
The interface basically translates your mouse clicks, joystick movements, and keyboard entries
into proprietary commands that are sent to the robot’s controller. These are the same
commands described in the commands list. In addition, the web interface displays the feedback
messages received from the robot and the 3D model of the actual robot.

URL address
Use the latest Google Chrome version to connect to Dorna Lab and its URL address is

117

https://www.google.com/chrome/
https://www.google.com/chrome/
https://www.google.com/chrome/

Unset

htpp://robot_ip_address

Where the robot_ip_address is the IP address of the robot. For example, if the IP address of
the robot is 10.0.0.14, then the Dorna Lab URL is: http://10.0.0.14

Halt button
On the top left of the screen, you have access to a Halt button. Use it to stop the robot
immediately.

Alarm information
When an alarm appears (alarm = 1), you will see a button pop up right beside the halt button,
asking for disabling the alarm. You can also see the raw alarm message along with the errors
associated with it (err) by clicking on the three dots right next to the Disable Alarm button.

Real-time orientation
Navigate to the Main tab, and you will find the robot's live orientation. This section displays the
live values of the robot joints, pose, velocity, and acceleration.

Jogging
Navigate to the Main tab, and you will find the jogging section there. This section is used for
jogging the robot with a joint move or line move.

118

http://10.0.0.14

● Motion parameters sliders: Use the slider to set the velocity, acceleration, and jerk of
the jog.

● Jog buttons: The jog buttons are used for moving the joint (Jog Joint) or TCP (Jog
Line) in the associated direction. By default, when you press a button, the robot starts
moving and stops when the button is released.

● Discrete Jog: Enable this feature and assign a nonzero value to the discrete jog, to
precisely jog. Each time you click on one of the jog buttons, then the robot moves in the
proper direction, depending on the button clicked, for the exact amount mentioned in the
discrete jog input. Use this option for fine-tuning the final position of the robot.

● Go button: Use this button to command the robot to go to the absolute orientation
mentioned in the go input fields.

● Relative move:When the relative move is enabled then the go button interrupts the go
input fields as the relative orientation compares to the current orientation and moves the
robot relative to the current position based on the values specified in the go input fields.

Motors
Use the motors switch to enable or disable the robot motors. The robot motors are disabled by
default when you turn the robot on. So, make sure to enable the motors before running any
program with motion. Otherwise, you will not see any motion.

119

Note

● When disabling the motors, the motors immediately lose their
power, and the robot can potentially fall.

● Use this feature mainly for hand training purposes or when you
need to put the robot in rest mode.

Hand training
There are two helper record buttons on the real-time orientation section to create a motion
command in the script section. The Record buttons on the left and right create joint and line
moves respectively, based on the robot's current orientation. Use these two buttons to quickly
record the position and run the result in the script panel.
Turn the motors off when you need to hand train the robot and move the robot with your hand.
Otherwise, the robot will resist your hand force and try to keep its current orientation. If you put
too much force on the robot, and the robot is not able to keep its position, then the robot goes
into alarm mode. When the motors are off the robot will no longer resist your hand motion and
the alarm never appears.

Setup
In this section you can

● Disable / enable the 3D view.
● Select a Keyboard or Joystick to control the robot if needed. Visit the Keyboard and

Joystick section in the setting for assigning the keys on the keyboard or joystick to the
robot.

3D view
In this section you are able to see the live 3D view of the robot.

I/O
Use this section, to monitor and control the robot I/Os. This section includes the digital outputs,
digital inputs, and the PWM channels.

120

Script
Use this section to write a script and run it on the robot.

● Replay: The replay switch lets you replay your script repeatedly, like a while loop.
● Track line: This option marks the last command completed in the script sent to the robot.

Log
Displays the commands sent to the robot and the messages received from the robot. Time is
included in each line. The commands sent from the user to the robot start with the symbol🔵
and the message received from the robot starts with the symbol🟢.

Blockly editor
Use the blocky section for drag-and-drop programming. There are many blocks available to
build your program. You can also see the Python interpretation of your code in the Python
viewer available in this section. Once you play your code, the robot translates your Blockly
design into Python code and runs it inside the robot controller.
For more examples, visit the example library at: https://github.com/dorna-robotics/example

Shell viewer
This section displays the shell messages (just like a terminal in your computer). When using the
log method, your log appears here with a PID number indicating which process printed this
message.

Python editor
Use this section to program your robot in Python language.

Processes
This section lists all the programs that have been executed on the robot since the robot's
startup. It also shows their running status. You also have the option of ending a process or
rerunning it.

End a process
When you end a process, the robot OS just kills that program. That does not necessarily mean
the robot stops once you end a process. For example, if your program sends multiple
commands to the robot, then ending that process just stops the program from sending more

121

https://github.com/dorna-robotics/example

commands to the robot. Still, the commands sent to the robot will be executed according to their
orders.
If you need to stop the robot completely, you must ensure that the robot queues are empty and
no process sends commands to the robot. For example, you can send a halt command to clean
all the queues.

Duplicate and run a process
When you re-run a process, the robot OS clone it (takes a separate copy) and runs it. As a
result, you can run multiple processes of the same program simultaneously.

Info
This section displays information about the robot

● Device ID: The unique identifier for your robot and controller
● Model: The model of your robot.
● Firmware, Dorna Lab, and API versions: Information about the current software running

on the robot and the latest version available. Click on Check for Updates… to see the
latest versions available. You need internet access on the robot to fetch this information
online. If an update is necessary, follow the upgrade process.

Auxiliary axes
Use this section to configure the auxiliary axes
Set the auxiliary axes parameters: usem, usee, pprm, tprm, ppre, tpre.
Also, use the switches in the Display section to hide or show a specific auxiliary axis in the jog,
real-time orientation, and set joint sections.

Emergency stop
You can trigger the alarm behavior when a specific input triggers (get high or low). The alarm
will remain active unless the specified input is toggled.

Startup programs
Add a list of programs to run automatically after the robot startup. These programs will also
appear in the Processes for more control over their life cycle.

122

Unset

Unset

Keyboard and Joystick
Use this section to connect a keyboard or joystick to the robot. Set your desired keyboard or
joystick functionality, or use the default settings.
Xbox and PlayStation controllers are all compatible with Windows computers. You can also
always check your joystick's button and axis names from the Gamepad tester.
Once the Keyboard or Joystick is configured, use the dropdown menu in the setup section to
select the joystick or keyboard.

Jupyter Notebook
The Jupyter Notebook tab redirects you to a Jupyter session running on the robot. The session
runs on

http://robot_ip_address:8888

Where the robot_ip_address is the IP address of the robot.

Create a kernel
You can navigate between the folders and create a kernel by clicking on the New dropdown (top
right).

Shutdown a kernel
You can navigate to the following address and locate the running kernels and shut down the
ones that are no longer required, to free up some CPU usage and RAM.

http://robot_ip_address:8888/tree?#running

Relaunch the server
If you quit the Jupyter server by accident and stop the server, then you can relaunch it again by
submitting the following command in the Shell Viewer and clicking the Submit button:

123

https://www.xbox.com/en-US/accessories
https://www.playstation.com/en-us/accessories/dualsense-wireless-controller/
https://gamepad-tester.com/
https://jupyter.org/
http://robot_ip_address:8888
http://robot_ip_address:8888

Unset

Unset

Unset

nohup jupyter notebook --ip 0.0.0.0 --no-browser --port=8888
--allow-root --notebook-dir="/home/dorna/" --NotebookApp.token=''
--NotebookApp.password='' &

File management
You can use the robot to host your files and run your programs directly inside the robot
controller without needing an external computer.

Exploring the files
There are different ways to access the files inside the robot controller:

● Dorna Lab file browser: This is an easy way to create and manage files and folders.
● Jupyter Notebook provides a powerful platform for file management.
● Install available file transfer software on your computer to explore and manage files and

folders inside the robot controller (example).

Programs location
We strongly recommend organizing your programs in the Projects folder and try not to store
anything outside of this folder. Create folders here to manage your projects and programs.

/home/dorna/Projects/

There are also example programs available at:

/home/dorna/Downloads/example/

Transfering files
Use FTP and SFTP software to transfer folders and files to (from) the robot (example). You can
also upload or download files using Dorna Lab and the Jupyter Notebook.

124

https://winscp.net/eng/index.php
https://winscp.net/eng/index.php

Unset

Unset

Python API
The Python API for Dorna is a set of helper functions and modules around the command server.
Use the API for quick application development and easy communication with external devices.

Useful links
● Report your technical issues for the API here.
● Find some sample codes here: https://github.com/dorna-robotics/example

Robot OS Python environment
Inside the robot controller, the Python environment the robot OS uses is called python3. If you
are accessing the robot via SSH, make sure to call your program via sudo

sudo python3 /path/to/the/python_file.py

Add a python library
SSH to the robot and use one of the following ways to add a new module or library to the robot:

● Via pip: The pip3 command is available in the robot OS, and if you need to install and
add a package from pip server to the robot controller (with a specific package_name),
then use the following command

sudo pip3 install package_name

● Via git: git command is available for the robot OS. We strongly recommend keeping all
the git repos inside /home/dorna/Projects/git/
To add a new repo, use the git command

125

https://github.com/dorna-robotics/dorna2-python/issues
https://github.com/dorna-robotics/example

Unset

Unset

sudo git clone https://github.com/sample_repo.git
/home/dorna/Projects/git/sample_repo

The above command downloads a repo located at
https://github.com/sample_repo.git to
/home/dorna/Projects/git/sample_repo.
If the package is a module then you can also install it as a module for Python, and make
it accessible to all other Python programs (read the package documentation on how to
install it)

cd /home/dorna/Projects/git/sample_repo
sudo pip3 install -r requirements.txt
cd ..
sudo pip3 install --upgrade --force-reinstall sample_repo/

Install the API
The upgrade process installs the latest Dorna Python API and other dependencies on the robot
OS. So, you do not need to go over this section and try to install the latest API on the robot
controller.
Follow this topic only if you need to directly run the API on your own computer and host your
code and program there.

Note

Note that the program has been tested only on Python 3.9+.

1. Download: First, use git clone to download the repository, or simply download the zip
file and unzip the file.

126

https://github.com/sample_repo.git
https://github.com/sample_repo.git

Unset

Unset

Unset

Python

git clone https://github.com/dorna-robotics/dorna2-python.git

2. Install: Next, go to the downloaded directory, where the setup.py file is located, and
run:

python setup.py install --force

Note

● On UNIX systems, you might need to use the sudo prefix for
admin privileges and install the requirements.

● Depending on your Python setup environment, you might also
call python3 instead of python:

sudo python3 setup.py install --force

Dorna class

Getting started
First, import the Dorna class from the dorna2 module, and then create a Dorna object.

from dorna2 import Dorna

127

create the Dorna object
robot = Dorna()

Connection
The robot server (WebSocket server) runs on ws://host:443, where the host parameter is
the host address (IP) of the robot controller, and 443 is the default port number. Once the
connection has been established between the robot and the client (user), they communicate by
sending and receiving data in JSON format.

connect(host="localhost", port=443, timeout=5)

Connect to the robot server at ws://host:port. Return True on a successful connection,
otherwise False.

Parameter

Key Type Default value Required

host String “localhost” No

The robot host address (IP).

port Int 443 No

The robot port number.

timeout Float (>0) 5 No

Wait a maximum of timeout seconds to establish a connection to the robot.

Note

The host (string) and port (integer) arguments are similar to the
Python socket.connect((host, port)) method.

128

https://www.json.org/
https://docs.python.org/3/library/asyncore.html#asyncore.dispatcher.connect

Python

close()

Use this method to close an opened connection. This method instantly closes the socket and
terminates the communication loop. After this, the Dorna object cannot send or receive any
message from (to) the robot unless you connect to the robot again.

Note

Once your task is completed and the connection is no longer required, it
is necessary to close the open connection.

from dorna2 import Dorna

create the Dorna object
robot = Dorna()

check if the connection is successful and then run you code
if robot.connect("10.0.0.14"):

#######################
your code goes here
#######################

always close the socket when you are done
robot.close()

Command status

track_cmd()

Return the replies of the last commands sent to the robot via the same Dorna object. This
method returns a nested Python dictionary with three main keys as follows:

● "cmd": The value assigned to this key is a Python dictionary, representing the initial
command sent to the robot.

129

https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/python_dictionaries.asp

Python

● "msgs": The value assigned to this key is a list of all replies from the robot controller
with the same id as the initial command. Each element in the list is a Python dictionary.
Elements in the list are also sorted in ascending order based on the time they have been
received by the API. So, the first element in the list was received earlier than the last
element in the list.

● "union": This is a Python dictionary formed by merging all the elements in the "msgs"
list and keeping the most recent value for each key.

Here is an example of showing the result of .track_cmd(), based on the replies we got in the
status of a command section.

robot.track_cmd()
"""
{

"cmd": {"cmd":"alarm","id":12},
"all": [{"id":12,"stat":0},

{"id":12,"stat":1},
{"cmd":"alarm","id":12,"alarm":0},
{"id":12,"stat":2}],

"merge": {"id":12,"stat":2,"cmd":"alarm","alarm":0}
}
"""

Sending command
In this section we cover methods to send commands to the robot.

play(timeout=-1, **kwargs)

Send a command to the robot, and return a .track_cmd() object associated with the
command sent.
There are multiple ways to send a message via .play(). For a better understanding, we send
a simple alarm status command in three different ways:

● Case 1: (Recommended) Key and value format: play(cmd="alarm", id=10)
● Case 2: Python dictionary format: play({"cmd": "alarm", "id": 10})
● Case 3: JSON string format: play('{"cmd": "alarm", "id": 10}')

Parameter

130

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/js/js_json_intro.asp

Key Type Default value Required

timeout Float -1 No

We can assign different values to the timeout parameter depending on your code logic:
● timeout < 0: Send command and wait for the command completion (stat = 2 or

stat < 0) and then return from the function. At this moment, we are sure that the
command is no longer running in the robot.

● timeout >= 0: Send a command and wait for a maximum of timeout seconds for its
completion. Notice that in this case, we might have returned from the .play()
method, but the command which was sent to the robot is still running or waiting inside
for the controller queue for its turn to get executed. If we do not want to wait for the
execution of a command at all, then we can always set timeout = 0.

msg Python dictionary or JSON string None No

Use this parameter if you want to send your command in a Python dictionary format (Case 2),
or in a JSON format (Case 3).

kwargs No

Use this parameter to send your command in a key and value format.

Note

● Throughout this API, we use and refer to the timeout key as an
argument inside many methods that are sending commands to
the robot. These functions use the timeout argument for
tracking the completion or any error during the execution of the
command that they are sending.

● The .play() method and any other method sending commands
to the robot always includes a random id field to your command
if it is not present.

For a better understanding of the timeout parameter, we send a joint move command to the
robot in four different ways.

131

https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/js/js_json_intro.asp

Python

import time

motion 1
start = time.time()
robot.play(timeout=-1, cmd="jmove", rel=1, j0=10, vel=1)
print("Motion 1 is completed, and took ", time.time()-start, "
seconds.")

motion 2
start = time.time()
robot.play(timeout=100, cmd="jmove", rel=1, j0=10, vel=1)
print("Motion 2 is completed, and took ", time.time()-start, "
seconds.")

motion 3
robot.play(timeout=2, cmd="jmove", rel=1, j0=10, vel=1)
print("2 seconds has passed and motion 3 is still running.")

motion 4
robot.play(timeout=0, cmd="jmove", rel=1, j0=10, vel=1)
print("Motion 3 is still running and motion 4 is waiting for its
execution.")

Output:
#
Motion 1 is completed and took 10.199519157409668 seconds.
Motion 2 is completed and took 10.207868814468384 seconds.
2 second has passed and motion 3 is still running.
Motion 3 is still running and motion 4 is waiting for its
execution.

132

Python

play_dict(cmd={}, timeout=-1)

similar to the .play() method, but this time sends a command to the robot in a Python
dictionary format.

play_json(cmd=’{}’, timeout=-1)

Similar to the .play() method, this time send a command to the robot in a JSON string format.
In this example, we send a similar command sent in the .play() method, in both dictionary
and JSON format.

play_dict
robot.play_dict({"cmd":"jmove", "rel":1, "j0":10, "vel":1})

play_json
robot.play_json('{"cmd":"jmove", "rel":1, "j0":10, "vel":1}')

play_script(file=””, timeout=-1)

Send all the messages that are stored in a script file to the robot controller. The method opens
the script file located at the file, reads the file line by line, and sends each line as a command
instantly.

Parameter

Key Type Default value Required

timeout Float -1 No

The timeout parameter acts similarly to the timeout parameter in .play() method:
● timeout < 0: The method sends all the commands in the script, and returns when

all those commands are completed.
● timeout >= 0: The method sends all the commands in the script file and waits a

maximum of timeout seconds for the completion of those commands before
returning.

script_path String “” Yes

Path to the script file.

133

Unset

Python

This method returns the overall status of the commands sent:
● 2: If all the commands in the script file are completed.
● 0 or 1: If the commands in the script file are still running.
● < 0: If there is any error during the execution of the commands in the script file.

Note

Use this function to send multiple messages at once to the robot. Notice
that each message has to occupy exactly one line. Multiple messages in
one line or one message in multiple lines is not a valid format. As an
example, here we show a valid and invalid script format:

valid format: Each message occupies exactly one line
{"cmd":"jmove","rel":0,"j0":0}
{"cmd":"jmove","rel":0,"j0":10}
{"cmd":"jmove","rel":0,"j0":-10}

invalid format: Multiple commands in one line or one command in
multiple lines
{"cmd":"jmove","rel":0,"j0":0}{"cmd":"jmove","rel":0,"j0":10}
{"cmd":"jmove","rel":0,
"j0":-10}

Here are two examples, of how to run a script file multiple times using a simple loop:

case 1: run a script 10 times
for i in range(10):

robot.play_script("test.txt")
robot.log("Script is completed")

134

Python

Python

Another example, that also keeps track of each script file as well (the safe way):

case 2: a safe way of running a script in a for loop, by
checking the return status of the script
for i in range(10):

stat= robot.play_script("test.txt")
if stat!= 2:

robot.log("Error happened")
break

robot.log("Script is completed")

Messages

last_cmd()

Return the last command sent to the robot, in a Python dictionary format.

last_msg()

Return the last message received from the controller, in a Python dictionary format.

union()

Return a Python dictionary, consisting of all the keys and their most up-to-date values received
from the controller since the connection has been established with the robot.

val(key=”cmd”)

Return the value of an specific key of the union().

print(robot.last_msg())

Output:
#
{'cmd':'output','id':81513,'out0':1,'out1':0,'out2':0,'out3':0,'o

135

https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/python_dictionaries.asp
https://www.w3schools.com/python/python_dictionaries.asp

ut4':0,'out5':0,'out6':0,'out7':0,'out8':0,'out9':0,'out10':0,'ou
t11':0,'out12':0,'out13':0,'out14':0,'out15':0}

print(robot.val("out0"))

print => 1

Move
In this section we cover robot motion functions.

jmove(timeout=-1, **kwargs)

A helper function to send a joint move (jmove) command to the robot, and return the stat of the
motion command sent.
This method is basically similar to the .play() method but the cmd key is set to "jmove". So,
.jmove(rel=1, j0=10, id=10) is equivalent to .play(cmd='jmove', rel=1,
j0=10, id=10).

Parameter

Key Type Default value Required

timeout Float -1 No

Similar to the timeout in the .play() method

kwargs Key and value Yes

The keys and values associated with the joint move (jmove) command.

lmove(timeout=-1, **kwargs)

A helper function to send a line move (lmove) command.

Parameter

Key Type Default value Required

timeout Float -1 No

136

Similar to the timeout in the .play() method

kwargs Key and value Yes

The keys and values associated with the line move (lmove) command.

cmove(timeout=-1, **kwargs)

A helper function to send a circle move (cmove) command.

Parameter

Key Type Default value Required

timeout Float -1 No

Similar to the timeout in the .play() method

kwargs Key and value Yes

The keys and values associated with the circle move (cmove) command.

Stop
Series of helper functions to send stop (halt) commands, read and set the alarm status of the
robot.

halt(accel=None)

A helper function to send a halt command to the robot, with a given acceleration ratio (accel),
and return the final status of the halt command (stat).

Parameter

Key Type Default value Required

accel Double (> =1) None No

The acceleration ratio parameter associated with the halt command.

137

Python

Python

robot.halt() # sends a halt command to the controller
robot.halt(5) # send a halt command with an acceleration ratio
equal to 5

get_alarm()

Get the robot alarm status (0 for disabled and 1 for enabled).

set_alarm(enable=None)

Enable or disable the alarm status of the robot (set enable to 0 for disabling and 1 for enabling
the alarm), and return the final status of the command (stat).

Disable the alarm, if the alarm exists
if robot.get_alarm():

robot.set_alarm(0)

Joint and TCP
In this section we cover methods that are related to robot orientation.

get_all_joint()

Get the joint values of the robot, in a list of size 8. Where index i in the list is the value of joint i
(ji).

get_joint(index=None)

Get the value of the joint index (0 <= int < 8).

set_joint(index=None, val=None)

Set the value of the joint index (0 <= int < 8) to val (float) and return the final status of the joint
command (stat) sent to the robot.

138

Python

Python

[180, 180, -142, 135, 0, 0, 0, 0]
robot.get_all_joint()

retuen the value of j1: 180
robot.get_joint(1)

set the value of j1 to 30
robot.set_joint(1, 30)

get_all_pose()

Get the value of the robot tool head (TCP) in the Cartesian coordinate system (with respect to
the robot base frame). in a list of size 8. Where indices 0 to 7 in this list are associated with the
coordinates x, y, z, a, b, c, d, e respectively.

get_pose(index=None)

Get the value of the TCP index (0 <= int < 8).

get_tool()

Get the value of the robot tool length in mm. The tool length is measured in the Z direction of the
robot flange frame.

set_tool(r00=None, r01=None, r02=None,r10=None, r11=None,
r12=None, r20=None, r21=None, r22=None, lx=None, ly=None,
lz=None)

Set the robot tool length (mm) to length and return the final status of the tool length command
(stat) sent to the robot.

robot.get_tool() # get the robot tool length in mm
robot.set_tool(lz=10) # set the robot tool length in z direction
to 10 mm

139

Python

Python

I/O
In this section we cover methods that are related to the robot inputs and outputs.

get_all_output()

Get the value of all the 16 output pins in a list of size 16. Where item i in the list is the value of
outi.

get_output(index=None)

Get the value of output pin index (0 <= int < 16).

set_output(index=None, val=None, queue=None)

Set the value of the output pin index ((0 <= int < 16) to val (0 or 1) and return the final status
of the output command (stat) sent to the robot.

robot.get_all_output() # return the value of all the 16 outputs
in a list of size 16
robot.get_output(0) # return the value of the out0
robot.set_output(0, 1) # set the value of the out0 to 1

get_pwm(index=None)

Get the value of the pwm channel index (0 <= int < 5).

set_pwm(index=None, enable=None, queue=None)

Enable or disable (set enable to 0 for disable and 1 for enable) the PWM channel index (0 <=
int < 5), and return the final status of the PWM command (stat) sent to the robot.

robot.get_pwm(0) # return the value of the pwm0
robot.set_pwm(0, 1) # enable pwm channel 0

140

Python

Python

get_freq(index=None)

Get the frequency of a pwm channel index (0 <= int < 5).

set_freq(index=None, freq=None, queue=None)

Set the frequency value of the PWM channel index (0 <= int < 5) to freq (0 <= float <=
120,000,000) and return the final status of the PWM command (stat) sent to the robot.

robot.get_freq(0) # return the frequency value of the PWM channel
0 (freq0)
robot.set_freq(0, 1000) # set freq0 to 1000

get_duty(index=None)

Get the duty cycle of the PWM channel index (0 <= int < 5).

set_duty(index=None, duty=None, queue=None)

Set the duty cycle of the PWM channel index (0 <= int < 5) to duty (0 <= float <= 100), and
return the final status of the PWM command (stat) sent to the robot.

robot.get_duty(0) # return the value of duty0
robot.set_duty(0, 10) # set the value of duty0 to 1 and return
its value

get_all_input()

Get the value of all the input pins in a list of size 16, where index i in the list is the value of ini.

get_input(index=None)

Get the value of the input pin index (0 <= int < 16)

141

Python

Python

robot.get_all_input() # return the value of all the 16 input pins
in a list of size 16
robot.get_input(0) # return the value of in0

get_all_adc()

Get the value of all the adc channels in a list of size 5, where item i in the list is the value of
adci.

get_adc(index=None)

Get the value of the adc channel index (0 <= int < 5)

robot.get_all_adc() # return the value of all the 5 ADC channels
in a list of size 5
robot.get_adc(0) # return the value of adc0

Wait and delay
Wait for an input pin pattern, encoder indices or delay for a certain amount of time in the
program.

probe(index=None, val=None)

Return the joint values of the robot in a list of size 8 (.get_all_joint()), the moment that
the input pin index (0 <= int < 16), is equal to the val (0 or 1).

Note

Use this method to wait for a pattern of inputs.

142

Python

Python

Python

robot.probe(1, 0) # return the joint values, the moment in1 gets
equal to 0

iprobe(index=None, val=None)

This method is similar to the probe function but here we are waiting for a specific pattern in the
encoder index, instead of an input pin. Return the joint values of the robot in a list of size 8
(.get_all_joint()), the moment that the encoder index (0 <= int < 8), is equal to the val
(0 or 1).

Note

Notice that the encoder on the motors gets high (1), 8 times during one
full rotation of the encoder, and we can locate these points by calling the
.iprobe function.

robot.iprobe(1, 1) # return the value of the joints, the moment
that index1 (encoder 1 index) gets 1

sleep(val=None)

Sleep for val (float >= 0) seconds and return the status of the command.

robot.sleep(10) # the controller sleeps for 10 seconds

Setting

get_motor()

Get the robot motors status (0 for disabled and 1 for enabled).

143

Python

set_motor(enable=None)

Enable or disable the motors and return the final status of the motor command (stat) sent to
the robot.

robot.get_motor() # get the robot motor status
robot.set_motor(0) # disable the motors

get_axis(index=None)

Note

This method applies only to Dorna TA.

Get the axis parameters of the auxiliary axis index (6 <= int < 8), in a list of size 6, [usem,
usee, pprm, tprm, ppre, tpre].

set_axis(index=None, usem=None, usee=None, pprm=None, tprm=None,
ppre=None, tpre=None)

Note

This method applies only to Dorna TA.

Set the axis parameters of the auxiliary axis index (5 <= int < 8), and return the final status of
the axis command (stat) sent to the robot.

get_pid(index=None)

Return the PID parameters (p, i, d, the, dur) of the joint index (0 <= int < 7) in a list of size
3 ([p, i, d]).

144

Python

Python

set_pid(index=None, p=None, i=None, d=None, thr=None, dur=None)

Set the PID parameters (p, i, d, thr, dur) of the joint index (0 <= int < 7), and return the
final status of the pid command (stat) sent to the robot.

Info

version()

Get the firmware version of the robot.

uid()

Get the robot controller's Universal Identification number.

robot.version() # get the firmware version
robot.uid() # get the controller UID

Log

log(msg)

Print a message in a terminal and a file at dorna.log.
The printed format includes time in the beginning followed by the msg.
Get the firmware version of the robot.

logger_setup(file="dorna.log")

The default path for the logs is at dorna.log. If you need to change the path, use this method
and assign a different log file to store the logs.

if robot.connect():
robot.log("connected")

""" output
2023-06-14 03:27:29,868 connected

145

Python

"""

Event
Every time a message is received from the robot, we can call (trigger) a function. This is useful
when you want to create an event, based on the messages received from the robot.

get_all_event()

Return the list of all the running events as a list.

add_event(target=None, kwargs={})

Register a function target to be called every time a message is received from the robot
controller.

Format of the target

The target function always starts with two required parameters, msg, and union. Other
necessary parameters can also be passed via **kwargs

target(msg, union, **kwargs)

● msg is the message received from the controller when the target was called
(last_msg()).

● union is the dictionary defined by the union(), the moment that target was called.
● **kwargs are all the remaining parameters we pass to the target function.

.clear_event(target=None)

This method acts opposite of add_event(), and it removes the event (function) target from
the event list.
It is important to call this method when we no longer need the registered event.

146

Python

.clear_all_event()

Removes all the events from the event list.

Example
Assume that you have a program running in a while loop, and you want to stop and exit the
program when out0 is enabled (1). So, we register an event that checks the messages
received from the robot and send a halt command if out0 == 1.

from dorna2 import Dorna

halt the robot when "out0" gets to 1
def stop_event(msg, union, dorna_robot):

if "out0" in msg and msg["out0"] == 1:
instant stop
dorna_robot.halt()

change the robot state to alarm to ensure that the
robot ignores all the future commands

dorna_robot.set_alarm(1)

exit the while loop of the main function
dorna_robot.prm_stop = True

def main(robot):
initial stop condition
robot.prm_stop = False

register a stop event
robot.add_event(target=stop_event, kwargs={"dorna_robot":

robot})

motion loop
while not robot.prm_stop:

147

robot.log("forward motion")
robot.jmove(rel=1, j0=10)

robot.log("reverse motion")
robot.jmove(rel=1, j0=-10)

if __name__ == '__main__':
ip = "localhost"
robot = Dorna()

connect to the robot
if robot.connect(ip):

main(robot)

close the connection
robot.close()

Troubleshooting

No LEDs are on upon power up
There are LED lights on the Ethernet port of the robot controller. If they are not blinking when
turning on the controller:

● Make sure all connectors are properly attached.
● Make sure you use the right AC voltage for the robot (If you use the wrong AC outlet,

then immediately turn off the robot).

No connection to the robot’s web interface
● If you are using an Ethernet cable, make sure the Ethernet cable is properly connected.

The green Ethernet LED should blink. If the green LED is not illuminated, detach and
reconnect the Ethernet cable.

● Make sure that the router/switch works by checking the LEDs of the connection socket.
● Make sure you are connected to the same network as the robot.

148

● If you are using static IP addresses, ensure the robot’s default IP address does not
conflict with any other device on the network.

● If you use a dynamic IP address (DHCP), verify the robot’s IP address via your router’s
web interface or other IP scanner software (example).

● Verify that you can SSH to the robot.
● If you just went over an upgrade process, which was unsuccessful, rerun the upgrade

steps again.

The robot fails to boot
● Disconnect the power cable from the AC outlet, reconnect the power cable, and turn the

robot’s controller on.

Joint and position lost
● Properly home the robot.
● Make sure all the pulleys are tight inside their shaft (tighten their screws if it is

necessary)

High-temperature motors
● Make sure that the motors are running under 70° C.
● Make sure that the environment temperature is under 50° C.
● Continuously running the robot at high speed and also high payload can increase the

motor's temperature over time.
● Double check motor driver settings to apply the right current to each motor (follow the

instruction here).

Maintenance

Check for upgrade
Periodically check for the upgrades and make sure that your robot runs the latest firmware and
software.

Cables and wires
Periodically check the moving cables inside the robot and check for any signs of wear and
damage.

149

https://www.advanced-ip-scanner.com/

Belts
Unlike other industrial robots, the Dorna TA requires no lubrication. Occasionally, check the
robot belts and look for any sign of wear, defect, or damage. You might still be able to operate
the robot with a defective belt, but these belts are more prone to damage and failure in the
future. So, ensure you have the spare parts ready if you need to change the belts.

Note

For more information about spare parts, make sure to contact us.

Connectors
Make sure that the connectors for encoders and motors are not hitting and colliding with any
object.

150

